Artificial Intelligence
Reduce food waste to improve sustainability and financial results in retail with Amazon Forecast
With environmental, social, and governance (ESG) initiatives becoming more important for companies, our customer, one of Greater China region’s top convenience store chains, has been seeking a solution to reduce food waste (currently over $3.5 million USD per year). Doing so will allow them to not only realize substantial operating savings, but also support corporate […]
Amazon SageMaker Automatic Model Tuning now supports grid search
Today Amazon SageMaker announced the support of Grid search for automatic model tuning, providing users with an additional strategy to find the best hyperparameter configuration for your model. Amazon SageMaker automatic model tuning finds the best version of a model by running many training jobs on your dataset using a range of hyperparameters that you […]
Introducing the Amazon SageMaker Serverless Inference Benchmarking Toolkit
Amazon SageMaker Serverless Inference is a purpose-built inference option that makes it easy for you to deploy and scale machine learning (ML) models. It provides a pay-per-use model, which is ideal for services where endpoint invocations are infrequent and unpredictable. Unlike a real-time hosting endpoint, which is backed by a long-running instance, compute resources for […]
Deploy a machine learning inference data capture solution on AWS Lambda
Monitoring machine learning (ML) predictions can help improve the quality of deployed models. Capturing the data from inferences made in production can enable you to monitor your deployed models and detect deviations in model quality. Early and proactive detection of these deviations enables you to take corrective actions, such as retraining models, auditing upstream systems, […]
AWS Celebrates 5 Years of Innovation with Amazon SageMaker
In just 5 years, tens of thousands of customers have tapped Amazon SageMaker to create millions of models, train models with billions of parameters, and generate hundreds of billions of monthly predictions. The seeds of a machine learning (ML) paradigm shift were there for decades, but with the ready availability of virtually infinite compute capacity, […]
Run inference at scale for OpenFold, a PyTorch-based protein folding ML model, using Amazon EKS
This post was co-written with Sachin Kadyan, a leading developer of OpenFold. In drug discovery, understanding the 3D structure of proteins is key to assessing the ability of a drug to bind to it, directly impacting its efficacy. Predicting the 3D protein form, however, is very complex, challenging, expensive, and time consuming, and can take […]
Configure DTMF slots and ordered retry prompts with Amazon Lex
This post walks you through a few new features that make it simple to design a conversational flow entirely within Amazon Lex that adheres to best practices for IVR design related to retry prompting. We also cover how to configure a DTMF-only prompt as well as other attributes like timeouts and barge-in. When designing an […]
Run multiple deep learning models on GPU with Amazon SageMaker multi-model endpoints
As AI adoption is accelerating across the industry, customers are building sophisticated models that take advantage of new scientific breakthroughs in deep learning. These next-generation models allow you to achieve state-of-the-art, human-like performance in the fields of natural language processing (NLP), computer vision, speech recognition, medical research, cybersecurity, protein structure prediction, and many others. For […]
Detect patterns in text data with Amazon SageMaker Data Wrangler
In this post, we introduce a new analysis in the Data Quality and Insights Report of Amazon SageMaker Data Wrangler. This analysis assists you in validating textual features for correctness and uncovering invalid rows for repair or omission. Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from […]
Reduce deep learning training time and cost with MosaicML Composer on AWS
In the past decade, we have seen Deep learning (DL) science adopted at a tremendous pace by AWS customers. The plentiful and jointly trained parameters of DL models have a large representational capacity that brought improvements in numerous customer use cases, including image and speech analysis, natural language processing (NLP), time series processing, and more. […]









