AWS Big Data Blog

How Getir unleashed data democratization using a data mesh architecture with Amazon Redshift

In this post, we explain how ultrafast delivery pioneer, Getir, unleashed the power of data democratization on a large scale through their data mesh architecture using Amazon Redshift. We start by introducing Getir and their vision—to seamlessly, securely, and efficiently share business data across different teams within the organization for BI, extract, transform, and load (ETL), and other use cases. We’ll then explore how Amazon Redshift data sharing powered the data mesh architecture that allowed Getir to achieve this transformative vision.

Apache HBase online migration to Amazon EMR

Apache HBase is an open source, non-relational distributed database developed as part of the Apache Software Foundation’s Hadoop project. HBase can run on Hadoop Distributed File System (HDFS) or Amazon Simple Storage Service (Amazon S3), and can host very large tables with billions of rows and millions of columns. The followings are some typical use […]

Infor’s Amazon OpenSearch Service Modernization: 94% faster searches and 50% lower costs

In this post, we’ll explore Infor’s journey to modernize its search capabilities, the key benefits they achieved, and the technologies that powered this transformation. We’ll also discuss how Infor’s customers are now able to more effectively search through business messages, documents, and other critical data within the ION OneView platform.

Demystify data sharing and collaboration patterns on AWS: Choosing the right tool for the job

Adoption of data lakes and the data mesh framework emerges as a powerful approach. By decentralizing data ownership and distribution, enterprises can break down silos and enable seamless data sharing. In this post, we discuss how to choose the right tool for building an enterprise data platform and enabling data sharing, collaboration and access within your organization and with third-party providers. We address three business use cases using AWS Glue, AWS Data Exchange, AWS Clean Rooms, and Amazon DataZone through three different use cases.

Get started with Amazon DynamoDB zero-ETL integration with Amazon Redshift

We’re excited to announce the general availability (GA) of Amazon DynamoDB zero-ETL integration with Amazon Redshift, which enables you to run high-performance analytics on your DynamoDB data in Amazon Redshift with little to no impact on production workloads running on DynamoDB. As data is written into a DynamoDB table, it’s seamlessly made available in Amazon Redshift, eliminating the need to build and maintain complex data pipelines.

Elevate your search and analytics skills with the new Amazon OpenSearch Service YouTube channel

We’re thrilled to announce the launch of the official Amazon OpenSearch Service YouTube channel—a comprehensive resource for anyone looking to master Amazon OpenSearch Service. Whether you’re just getting started with searches , vectors, analytics, or you’re looking to optimize large-scale implementations, our channel can be your go-to resource to help you unlock the full potential of OpenSearch Service.

Migrate from Amazon Kinesis Data Analytics for SQL to Amazon Managed Service for Apache Flink and Amazon Managed Service for Apache Flink Studio

Amazon Kinesis Data Analytics for SQL is a data stream processing engine that helps you run your own SQL code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics. AWS has made the decision to discontinue Kinesis Data Analytics for SQL, effective January 27, 2026. In this post, we explain why we plan to end support for Kinesis Data Analytics for SQL, alternative AWS offerings, and how to migrate your SQL queries and workloads.