AWS Machine Learning Blog

Category: Amazon SageMaker Autopilot

Bring SageMaker Autopilot into your MLOps processes using a custom SageMaker Project

Every organization has its own set of standards and practices that provide security and governance for their AWS environment. Amazon SageMaker is a fully managed service to prepare data and build, train, and deploy machine learning (ML) models for any use case with fully managed infrastructure, tools, and workflows. SageMaker provides a set of templates […]

Amazon SageMaker Automatic Model Tuning now automatically chooses tuning configurations to improve usability and cost efficiency

Amazon SageMaker Automatic Model Tuning has introduced Autotune, a new feature to automatically choose hyperparameters on your behalf. This provides an accelerated and more efficient way to find hyperparameter ranges, and can provide significant optimized budget and time management for your automatic model tuning jobs. In this post, we discuss this new capability and some […]

Announcing provisioned concurrency for Amazon SageMaker Serverless Inference

Amazon SageMaker Serverless Inference allows you to serve model inference requests in real time without having to explicitly provision compute instances or configure scaling policies to handle traffic variations. You can let AWS handle the undifferentiated heavy lifting of managing the underlying infrastructure and save costs in the process. A Serverless Inference endpoint spins up […]

Host ML models on Amazon SageMaker using Triton: Python backend

Amazon SageMaker provides a number of options for users who are looking for a solution to host their machine learning (ML) models. Of these options, one of the key features that SageMaker provides is real-time inference. Real-time inference workloads can have varying levels of requirements and service level agreements (SLAs) in terms of latency and […]

Use Snowflake as a data source to train ML models with Amazon SageMaker

May 2023: This blog post has been updated to include a workflow that does not require building a custom container. Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data scientists and developers can quickly and easily build and train ML models, and then directly deploy them into a production-ready hosted environment. […]

Virtual fashion styling with generative AI using Amazon SageMaker 

The fashion industry is a highly lucrative business, with an estimated value of $2.1 trillion by 2025, as reported by the World Bank. This field encompasses a diverse range of segments, such as the creation, manufacture, distribution, and sales of clothing, shoes, and accessories. The industry is in a constant state of change, with new […]

Deploy Amazon SageMaker Autopilot models to serverless inference endpoints

Amazon SageMaker Autopilot automatically builds, trains, and tunes the best machine learning (ML) models based on your data, while allowing you to maintain full control and visibility. Autopilot can also deploy trained models to real-time inference endpoints automatically. If you have workloads with spiky or unpredictable traffic patterns that can tolerate cold starts, then deploying […]

Minimize the production impact of ML model updates with Amazon SageMaker shadow testing

Amazon SageMaker now allows you to compare the performance of a new version of a model serving stack with the currently deployed version prior to a full production rollout using a deployment safety practice known as shadow testing. Shadow testing can help you identify potential configuration errors and performance issues before they impact end-users. With […]

Launch Amazon SageMaker Autopilot experiments directly from within Amazon SageMaker Pipelines to easily automate MLOps workflows

Amazon SageMaker Autopilot, a low-code machine learning (ML) service that automatically builds, trains, and tunes the best ML models based on tabular data, is now integrated with Amazon SageMaker Pipelines, the first purpose-built continuous integration and continuous delivery (CI/CD) service for ML. This enables the automation of an end-to-end flow of building ML models using […]

Deploy an MLOps solution that hosts your model endpoints in AWS Lambda

In 2019, Amazon co-founded the climate pledge. The pledge’s goal is to achieve net zero carbon by 2040. This is 10 years earlier than the Paris agreement outlines. Companies who sign up are committed to regular reporting, carbon elimination, and credible offsets. At the time of this writing, 377 companies have signed the climate pledge, […]