AWS Quantum Technologies Blog
Tag: quantum algorithms
How to use pulse-level control on OQC’s superconducting quantum computer
Amazon Braket Pulse lets you control the low-level analog instructions for quantum computers, to optimize performance or develop new analog protocols, like error suppression and mitigation. Today we show you how and describe some best practices.
Running quantum chemistry calculations using AWS ParallelCluster
This blog post is an introduction to HPC on AWS for quantum computing researchers who are seeking to compare their quantum or hybrid algorithms against classical calculations.
Introducing the Wolfram Quantum Framework for Amazon Braket
In this post, we’ll explore the Wolfram Quantum Framework and show you how to connect it with Amazon Braket to run quantum algorithms.
Graph coloring with physics-inspired graph neural networks
In this post we show how physics-inspired graph neural networks can be used to solve the notoriously hard graph-coloring problem, at scale. This can help in an huge number of familiar resource-allocation problems from sports to rental cars.
How we learned to program with atoms in 24 hours flat
Earlier this year, QuEra and AWS sponsored the first-ever hackathon on a neutral-atom computer. In 24 hrs the teams solved hard problems using real quantum computers. It was a rush. We asked the winning team to tell us their story.
Running Jupyter notebooks as hybrid jobs with Amazon Braket
Running Jupyter notebooks as Hybrid Jobs on Amazon Braket, you get performance and convenience of jobs, without modifying code. In this post, we show how you can scale up from exploratory notebook to repeatable and reliable experiments on different quantum hardware.
Exploring computational chemistry using Quantinuum’s InQuanto on AWS
Introduction Quantum computers hold the promise of driving novel approaches to solving complex problems across multiple fields, including optimization, machine learning, and the simulation of physical systems. Researchers are already using quantum computers to explore computational chemistry problems, however the scale and capabilities of quantum devices available today is limited by noise and other factors. […]
Introducing the Amazon Braket Algorithm Library
Research scientists and quantum algorithm developers are often new to cloud computing. Their main focus during quantum algorithm development should center on writing algorithm code; however, they often spend time setting up and maintaining interactive development environments, estimating costs to run their code on classical or quantum hardware, and stitching together common subroutines. Today, we […]
Amazon Braket launches Braket Pulse to develop quantum programs at the pulse level
When experimenting on a quantum computer, customers often need to program at the lower-level language of the device. Today, we are launching Braket Pulse, a feature that provides pulse-level access to quantum processing units (QPUs) from two hardware providers on Amazon Braket, Rigetti Computing and Oxford Quantum Circuits (OQC). In this blog, we present an […]
Amazon Braket now supports verbatim compilation and native gates with IonQ
As of 05/17/2023, the ARN of the IonQ Harmony device changed to arn:aws:braket:us-east-1::device/qpu/ionq/Harmony. Therefore, information on this page may be outdated. Learn more. Previously, when customers submitted a circuit to the IonQ device on Amazon Braket, the circuit was automatically compiled to native instructions. Today, we are extending the verbatim compilation feature to IonQ’s 11-qubit […]