Amazon Web Services ブログ

Tag: Amazon SageMaker

【開催報告】AWS AI/ML@Tokyo #1 ~AWS の AI/ML サービス最新情報~

アマゾン ウェブ サービス ジャパン株式会社の大渕です。AWS Japan は、2020年からAI/ML関連情報を発信するイベント「AWS AI/ML@Tokyo」を定期的に開催します。2020年2月6日に開催された AWS AI/ML@Tokyo #1では、AWS Japan によるAWS AI/ML サービスの紹介と、2019年12月の re:Invent 2019 で発表された Amazon SageMaker Studio など新機能の紹介を行いました。

Read More

【開催報告】AWS AI/ML@Tokyo #2 ~エンタプライズ企業におけるAmazon SageMakerの活用~

アマゾン ウェブ サービス ジャパン株式会社の帆足 (Twitter: @hoahoa) です。AWS Japan 目黒オフィスでは、今年からAI/ML関連情報を発信するイベント「AWS AI/ML@Tokyo」を定期的に開催しています。2020年2月27日に開催された AWS AI/ML@Tokyo #2では、AWS Japan によるサービスの最新情報や事例紹介と、Amazon SageMaker をご利用いただいているお客様をゲストスピーカーにお招きし、実際に導入頂いたお客様による「体験談」をお話し頂きました。

Read More

【開催報告】第10回Amazon SageMaker 事例祭り

アマゾン ウェブ サービス ジャパン株式会社 パートナーソリューションアーキテクトの小田桐です。 AWS Japan 目黒オフィスでは「Amazon SageMaker 事例祭り」(Twitter: #sagemaker_fes) を定期的に開催しています。2019年11月28日に開催された 第10回 Aazon SageMaker 事例祭り では、AWS Japan のソリューションアーキテクトによるサービスの最新情報や技術情報と、Amazon SageMaker をご利用いただいているお客様をゲストスピーカーにお招きし、実際に導入頂いたお客様による「体験談」をお話し頂きました。

Read More

Amazon SageMakerですぐに利用可能: Deep Graph Library

本日、グラフニューラルネットワークを簡単に実装できるオープンソースのライブラリ Deep Graph Library が Amazon SageMaker で使用できる機能が発表されました。 近年では、手書き文字・画像・動画などの複雑なデータから、精巧なパターンを抽出できる優れた能力によって、深層学習が世の中を席巻しています。しかしながら、このようなカテゴリーに分類されないデータは多く存在しており、こうしたデータはグラフを使うことでより適切に表現可能な場合があります。直感的にも、畳み込みニューラルネットワークや回帰型ニューラルネットワークのような従来のニューラルネットワークは、このようなデータに対して適切ではないことがわかりますし、新たなアプローチが必要と言えます。 グラフニューラルネットワークとは グラフニューラルネットワーク(GNN)は最近開発された機械学習に関連した技術の中で最もわくわくするものの一つで、これらの参考文献を読むことで、まずは概要を理解できます。 GNNは次のようなデータセットに対する予測モデルを作成するために使用されます。 ソーシャルネットワーク: 人同士の関係性を示すグラフ 推薦システム: カスタマーと商品の関係性を示すグラフ 化学構造解析: 化合物が原子やそれらの結合としてモデル化されているグラフ サイバーセキュリティ: ソースとデスティネーション IP アドレスの関係性を示すグラフ 多くの場合、これらのデータセットは非常に大きく、その一部にしかレベル付けがなされていません。例えば、詐欺行為の検出を目的として、特定の人物が詐欺を働く確率を予測するために、詐欺を過去に働いたことがある既知の人物との関係性を解析するシナリオを考えます。これは、グラフの一部のみが詐欺師または善良な人物としてラベルづけされている半教師あり学習のタスクになります。そして、人手でラベル付けした大規模なデータセットを用意して、データを「linearize」し、従来の機械学習アルゴリズムを適用するよりも良いソリューションであると言えます。 このような問題へ取り組むにあたって、それぞれの業界知識 (小売、金融、化学など) 、コンピュータサイエンスの知識 (Python, 深層学習, オープンソースのツール) 、IT インフラの知識 (モデルのトレーニング、デプロイ、スケールリングの方法) が必要になります。全てのスキルを習得できる方はごく少数でしかないため、Deep Graph LibraryやAmazon SageMakerのようなツールが必要とされています。 Deep Graph Libraryの紹介 Github上で2018年 12月にリリースされたDeep Graph Library (DGL) とは、研究者や科学者が自分たちのデータセットを対象に、GNNのすばやい開発・学習・評価を補助してくれるPythonのオープンソースライブラリです。 DGLは PyTorch や Apache MXNet のようなポピュラーなディープラーニングフレームワークの上で動作するようになっています。これらのフレームワークに関する知識がある場合は、初心者でも安心な実装例を通して簡単に使い始めることができます。GTC 2019 で開催されたワークショップの資料も非常に参考になります。実装例を試したあと、DGL で実装された最先端のモデルをここから試すことも可能です。例えば、Graph Convolution Network (GCN) と CORA […]

Read More

【開催報告】第9回Amazon SageMaker 事例祭り

アマゾン ウェブ サービス ジャパン株式会社 機械学習ソリューションアーキテクトの上総 (Twitter:@tkazusa ) です。AWS Japan 目黒オフィスでは「Amazon SageMaker 事例祭り」(Twitter: #sagemaker_fes) を定期的に開催しています。2019年10月30日に開催された 第9回 Aazon SageMaker 事例祭り では、AWS Japan のソリューションアーキテクトによるサービスの最新情報や技術情報と、Amazon SageMaker をご利用いただいているお客様をゲストスピーカーにお招きし、実際に導入頂いたお客様による「体験談」をお話し頂きました。

Read More

【開催報告】第8回 Amazon SageMaker 事例祭り

アマゾン ウェブ サービス ジャパン株式会社 機械学習ソリューションアーキテクトの上総 (Twitter:@tkazusa) です。AWS Japan 目黒オフィスでは「Amazon SageMaker 事例祭り」(Twitter: #sagemaker_fes) を定期的に開催しています。2019年9月19日に開催された 第8回 Amazon SageMaker 事例祭り|体験ハンズオン では、前半にセッションの部として、AWS Japan のソリューションアーキテクトによるサービスの最新情報や技術情報と、Amazon SageMaker をご利用いただいているお客様をゲストスピーカーにお招きし、実際に導入頂いたお客様による「体験談」をお話し頂きました。また後半ではハンズオンの部として、SageMakerを用いた機械学習モデル開発のプロセスを、機械学習を利用した異常検知や画像分類を例に、ご来場の皆様と共にハンズオン形式でご体験頂きました。

Read More

【開催報告】 第7回 Amazon SageMaker 事例祭り

アマゾン ウェブ サービス ジャパン株式会社 機械学習ソリューションアーキテクトの大渕です。AWS Japan 目黒オフィスでは「Amazon SageMaker 事例祭り」(Twitter: #sagemaker_fes) を定期的に開催しています。2019年8月29日に開催された第7回 Amzon SageMaker 事例祭りでは、AWS Japan のソリューションアーキテクトによるサービスの最新情報や技術情報と、Amazon SageMaker をご利用いただいているお客様をゲストスピーカーにお招きし、実際に導入頂いたお客様による「体験談」をお話し頂きました。

Read More

【開催報告】 第6回 Amazon SageMaker 事例祭り

アマゾン ウェブ サービス ジャパン株式会社 機械学習ソリューションアーキテクトの上総 (Twitter:@tkazusa) です。AWS Japan 目黒オフィスでは「Amazon SageMaker 事例祭り」(Twitter: #sagemaker_fes) を定期的に開催しています。2019年7月18日に開催された第6回 Amzon SageMaker 事例祭りでは、AWS Japan のソリューションアーキテクトによるサービスの最新情報や技術情報と、Amazon SageMaker をご利用いただいているお客様をゲストスピーカーにお招きし、実際に導入頂いたお客様による「体験談」をお話し頂きました。

Read More

Amazon SageMaker の体験ハンズオン動画とQAを公開しました

先日 (2019/5/17) 開催しました 「Amazon SageMaker 機械学習エンジニア向け体験ハンズオン」の動画および資料を公開しました。当日、参加者の皆様から多数頂いた QA についても掲載しています。 Amazon SageMaker は、データサイエンティストやエンジニアが効率よく機械学習を進めるために、 AWS が提供するマネージドサービスです。この動画はSageMakerの基本的な使い方を体験できる1時間のハンズオン動画となっており、動画を見ながら実際に手を動かすことで、SageMakerの利用法を効率よく理解することができます。これからSageMakerを利用して機械学習に取り組む際にはAWS Black Belt オンラインセミナーと合わせて是非ご覧下さい。 【ハンズオンの概要】 1) ビルトインアルゴリズムの利用 ・Random Cut Forest を利用した異常検知 ・XGBoost を利用した画像認識(紹介のみ) 2) Deep Learning フレームワークの利用 ・Chainer を利用した画像認識          ※ 動画の一例 視聴はこちらから >> ※ リンク先でフォームに登録いただきますと、各コンテンツにアクセス可能となります。   当日、参加者の皆様から頂いた QA を以下に掲載します。 Q. SageMakerと他のMachine Learningサービスの区別は?マネージドサービスの中の機械学習サービスの分別とか、適用範囲を教えて頂けませんか A. 機械学習に関連するAWSサービスは、インフラストラクチャ、MLサービス、AIサービスという3つのカテゴリに大きく分けられます。 1. 機械学習を支えるインフラストラクチャには、GPU/FPGA/大量のCPUを搭載したEC2やAWS IoT Greengrass、Amazon Elastic Inferenceなどが該当します。 […]

Read More

【開催報告】第5回 Amazon SageMaker 事例祭り

アマゾン ウェブ サービス ジャパン株式会社 (AWS Japan) アソシエイトソリューションアーキテクトの針原 (Twitter: @_hariby) です。AWS Japan 目黒オフィスでは「Amazon SageMaker 事例祭り」(Twitter: #sagemaker_fes) を毎月開催しています。2019年5月21日に開催された第5回 Amzon SageMaker 事例祭りでは、AWS Japan のソリューションアーキテクトによるサービス紹介と、Amazon SageMaker をご利用いただいているお客様をゲストスピーカーにお招きした具体的な導入・運用事例紹介をさせて頂きました。各セッションの様子を以下にまとめます。

Read More