Amazon Web Services ブログ

Tag: Amazon SageMaker

Amazon SageMaker で Optuna を用いたハイパーパラメータ最適化を実装する

Amazon SageMaker はお客様の機械学習のワークロードにおいて様々な選択肢を提供します。深層学習フレームワークの選択肢として2018年の AWS Summit Tokyo で発表された Chainer 対応はその一つです。Chainer は 株式会社Preferred Networks により開発された深層学習フレームワークで、計算時に動的にグラフを生成する define-by-run の考え方 (imperative な実行とも呼ばれます) を世界に先駆けて取り入れました。株式会社Preferred Networks はこの Chainer とは独立に、同じく define-by-run の思想に基づいたハイパーパラメータの最適化 (HPO) のための Optuna を2018年12月に発表しました。本稿では、AWS が提供する SageMaker 上で Optuna を用いた HPO を行う方法とアーキテクチャについてご紹介します。 導入 SageMaker が提供する HPO の選択肢 Amazon SageMaker は、TensorFlow, Apache MXNet, PyTorch, Chainer, scikit-learn, Horovod, Keras, Gluon などのフレームワーク・インターフェースに対応し、すべての開発者とデータサイエンティストに機械学習モデルの構築・学習・デプロイ手段を提供する AWS のサービスです。SageMaker はマネージド型の […]

Read More

【開催報告】第2回 Amazon SageMaker 事例祭り

アマゾン ウェブ サービス ジャパン株式会社 (AWS) ソリューションアーキテクトの針原佳貴です。 AWS では、Amazon SageMaker のハンズオンとお客様の登壇による事例紹介を合わせたイベント「Amazon SageMaker 事例祭り」を毎月開催しています。2018年2月12日に目黒オフィスで第2回 Amzon SageMaker 事例祭りが開催され150名ほどの方にご参加頂いたので、以下でその概要についてお伝えします。今回の Amazon SageMaker 事例祭りは Chainer x AWS というテーマで、セミナーと事例発表の二部構成で開催されました。   セミナー 「Chainer v5 とこれから ~学習と推論の最新機能~」株式会社Preferred Networks リサーチャー 得居誠也 様 [slides] Chainer は Python で実装された Define by Run の深層学習フレームワークで、NumPy のような既存の Python ライブラリをそのまま使い、直感的な API によるモデルの記述ができます。本発表ではまずこれらの設計思想と API の解説を改めて Chainer のリード開発者である 株式会社Preferred Networks 得居様からお話し頂きました。また、大規模データに対するトレーニングの際に求められる Serializers によるパラメータのファイル出力や、ONNX-Chainer, […]

Read More
keras-logo

Amazon SageMaker で簡単に Keras を使う方法

Amazon SageMaker は、すべての開発者とデータサイエンティストに機械学習モデルの構築、トレーニング、デプロイの手段を提供する AWS のマネージドサービスです。SageMaker は深層学習の主要なフレームワークをサポートしており、TensorFlow、Apache MXNet、PyTorch、Chainer などを用いてモデルを記述することができます。また、TensorFlow や MXNet をバックエンドとした Keras の高レベルな API を用いることで、モデルを簡単にすばやく作成することもできます。 これまで、Keras で書いたコードを SageMaker 上で動かす方法について、多くのお客様からご質問を頂いておりました。2018年12月に、SageMaker の TensorFlow ならびに MXNet のコンテナに、それぞれのフレームワークをバックエンドとする Keras がデフォルトでインストールされました。また両コンテナでは Script Mode をサポートしているため、SageMaker 外で開発した Keras のコードに、わずかな修正を加えるだけで動かすことができるようになりました。ここでは Keras 公式サンプルコードの mnist_cnn.py をなるべくそのまま利用して、SageMakerのTensorFlowとMXNetコンテナで実行する方法をご説明します。   TensorFlow Backend での Keras の使い方 トレーニングスクリプトの修正 AWS のマネージドコンソールから SageMaker ノートブックインスタンス (Jupyter/JupyterLab) を開き、Keras のリポジトリをクローンします (このブログのようにノートブックインスタンスの作成時に関連付けることも可能です)。keras/examples/mnist_cnn.py の中で以下の3点を修正します: 学習からモデルの保存までを train(args) 関数として定義します。ここでは次の手順で読み込む args […]

Read More