AWS Machine Learning Blog
Category: Amazon Machine Learning
How Twilio generated SQL using Looker Modeling Language data with Amazon Bedrock
As one of the largest AWS customers, Twilio engages with data, artificial intelligence (AI), and machine learning (ML) services to run their daily workloads. This post highlights how Twilio enabled natural language-driven data exploration of business intelligence (BI) data with RAG and Amazon Bedrock.
Improve AI assistant response accuracy using Knowledge Bases for Amazon Bedrock and a reranking model
AI chatbots and virtual assistants have become increasingly popular in recent years thanks the breakthroughs of large language models (LLMs). Trained on a large volume of datasets, these models incorporate memory components in their architectural design, allowing them to understand and comprehend textual context. Most common use cases for chatbot assistants focus on a few […]
Build custom generative AI applications powered by Amazon Bedrock
With my blog post from June, I started a series that highlights the key factors that are driving customers to choose Amazon Bedrock. I explored how Bedrock enables customers to build a secure, compliant foundation for generative AI applications. Now I’d like to turn to a slightly more technical, but equally important differentiator for Bedrock—the multiple techniques that you can use to customize models and meet your specific business needs.
Use Amazon Bedrock to generate, evaluate, and understand code in your software development pipeline
Generative artificial intelligence (AI) models have opened up new possibilities for automating and enhancing software development workflows. Specifically, the emergent capability for generative models to produce code based on natural language prompts has opened many doors to how developers and DevOps professionals approach their work and improve their efficiency. In this post, we provide an […]
Build an end-to-end RAG solution using Amazon Bedrock Knowledge Bases and AWS CloudFormation
Retrieval Augmented Generation (RAG) is a state-of-the-art approach to building question answering systems that combines the strengths of retrieval and foundation models (FMs). RAG models first retrieve relevant information from a large corpus of text and then use a FM to synthesize an answer based on the retrieved information. An end-to-end RAG solution involves several […]
Faster LLMs with speculative decoding and AWS Inferentia2
In recent years, we have seen a big increase in the size of large language models (LLMs) used to solve natural language processing (NLP) tasks such as question answering and text summarization. Larger models with more parameters, which are in the order of hundreds of billions at the time of writing, tend to produce better […]
Catalog, query, and search audio programs with Amazon Transcribe and Amazon Bedrock Knowledge Bases
Information retrieval systems have powered the information age through their ability to crawl and sift through massive amounts of data and quickly return accurate and relevant results. These systems, such as search engines and databases, typically work by indexing on keywords and fields contained in data files. However, much of our data in the digital […]
Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock
This blog is part of the series, Generative AI and AI/ML in Capital Markets and Financial Services. Company earnings calls are crucial events that provide transparency into a company’s financial health and prospects. Earnings reports detail a firm’s financials over a specific period, including revenue, net income, earnings per share, balance sheet, and cash flow […]
Streamline insurance underwriting with generative AI using Amazon Bedrock – Part 1
Underwriting is a fundamental function within the insurance industry, serving as the foundation for risk assessment and management. Underwriters are responsible for evaluating insurance applications, determining the level of risk associated with each applicant, and making decisions on whether to accept or reject the application based on the insurer’s guidelines and risk appetite. In this […]
Import a fine-tuned Meta Llama 3 model for SQL query generation on Amazon Bedrock
In this post, we demonstrate the process of fine-tuning Meta Llama 3 8B on SageMaker to specialize it in the generation of SQL queries (text-to-SQL). Meta Llama 3 8B is a relatively small model that offers a balance between performance and resource efficiency. AWS customers have explored fine-tuning Meta Llama 3 8B for the generation of SQL queries—especially when using non-standard SQL dialects—and have requested methods to import their customized models into Amazon Bedrock to benefit from the managed infrastructure and security that Amazon Bedrock provides when serving those models.