AWS Machine Learning Blog
Category: Artificial Intelligence
Announcing the Preview of Amazon SageMaker Profiler: Track and visualize detailed hardware performance data for your model training workloads
Today, we’re pleased to announce the preview of Amazon SageMaker Profiler, a capability of Amazon SageMaker that provides a detailed view into the AWS compute resources provisioned during training deep learning models on SageMaker. With SageMaker Profiler, you can track all activities on CPUs and GPUs, such as CPU and GPU utilizations, kernel runs on GPUs, kernel launches on CPUs, sync operations, memory operations across GPUs, latencies between kernel launches and corresponding runs, and data transfer between CPUs and GPUs. In this post, we walk you through the capabilities of SageMaker Profiler.
Persistent Systems shapes the future of software engineering with Amazon CodeWhisperer
Persistent Systems, a global digital engineering provider, has run several pilots and formal studies with Amazon CodeWhisperer that point to shifts in software engineering, generative AI-led modernization, responsible innovation, and more. This post highlights four themes emerging from Persistent’s Amazon CodeWhisperer experiments that could change software engineering as we know it.
Announcing Amazon S3 access point support for Amazon SageMaker Data Wrangler
In this post, we walk you through importing data from, and exporting data to, an S3 access point in SageMaker Data Wrangler.
Machine learning with decentralized training data using federated learning on Amazon SageMaker
In this post, we discuss how to implement federated learning on Amazon SageMaker to run ML with decentralized training data.
Explain medical decisions in clinical settings using Amazon SageMaker Clarify
In this post, we show how to improve model explainability in clinical settings using Amazon SageMaker Clarify. Explainability of machine learning (ML) models used in the medical domain is becoming increasingly important because models need to be explained from a number of perspectives in order to gain adoption. These perspectives range from medical, technological, legal, and the most important perspective—the patient’s. Models developed on text in the medical domain have become accurate statistically, yet clinicians are ethically required to evaluate areas of weakness related to these predictions in order to provide the best care for individual patients. Explainability of these predictions is required in order for clinicians to make the correct choices on a patient-by-patient basis.
Apply fine-grained data access controls with AWS Lake Formation in Amazon SageMaker Data Wrangler
We are happy to announce that SageMaker Data Wrangler now supports using Lake Formation with Amazon EMR to provide this fine-grained data access restriction.
Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift
Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. Many practitioners are extending these Redshift datasets at scale for machine learning (ML) using Amazon SageMaker, a fully managed ML service, with requirements to develop features offline in a code […]
Unlocking efficiency: Harnessing the power of Selective Execution in Amazon SageMaker Pipelines
MLOps is a key discipline that often oversees the path to productionizing machine learning (ML) models. It’s natural to focus on a single model that you want to train and deploy. However, in reality, you’ll likely work with dozens or even hundreds of models, and the process may involve multiple complex steps. Therefore, it’s important […]
Train self-supervised vision transformers on overhead imagery with Amazon SageMaker
In this post, we demonstrate how to train self-supervised vision transformers on overhead imagery using Amazon SageMaker. Travelers collaborated with the Amazon Machine Learning Solutions Lab (now known as the Generative AI Innovation Center) to develop this framework to support and enhance aerial imagery model use cases.
How Thomson Reuters developed Open Arena, an enterprise-grade large language model playground, in under 6 weeks
In this post, we discuss how Thomson Reuters Labs created Open Arena, Thomson Reuters’s enterprise-wide large language model (LLM) playground that was developed in collaboration with AWS. The original concept came out of an AI/ML Hackathon supported by Simone Zucchet (AWS Solutions Architect) and Tim Precious (AWS Account Manager) and was developed into production using AWS services in under 6 weeks with support from AWS. AWS-managed services such as AWS Lambda, Amazon DynamoDB, and Amazon SageMaker, as well as the pre-built Hugging Face Deep Learning Containers (DLCs), contributed to the pace of innovation.