AWS Quantum Computing Blog

Tag: quantum computing

Realizing quantum spin liquid phase on an analog Hamiltonian Rydberg simulator

This week at re:Invent, we announced the future availability of a Rydberg-atom based quantum computer from QuEra Computing. Launching in 2022, it will introduce a new quantum computing paradigm to Amazon Braket, Analog Hamiltonian Simulation (AHS). AHS uses programmable quantum devices to emulate the behavior of other quantum mechanical systems. Already today, researchers in academia […]

Read More

Improving analysis of the computational cost of quantum simulations for chemistry and material science

This post summarizes a recent research paper from the AWS Center for Quantum Computing. The paper provides an improved analysis of quantum simulation of chemical and material systems. This research shows that such simulations can be implemented using fewer elementary quantum operations than previously thought. Computer simulations enable scientists to test their intuition about the […]

Read More
ConnectWise

Implementing a Recommendation Engine with Amazon Braket

In this blog post, we detail an approach to solving a feature selection problem that implements a recommendation engine using Amazon Braket – the quantum computing service by Amazon Web Services. Our approach tackles the “cold-start” problem that recommendation systems face, produces a solution comparable with traditional approaches, and reaches the required levels of accuracy […]

Read More
CINECA Center in Italy

CINECA and AWS bring new quantum computing capabilities to the Italian research community

CINECA and AWS are collaborating on a series of quantum computing research initiatives to help to accelerate the next generation of computational capabilities and enable new research in Italy. CINECA is a consortium made up of 70 Italian universities and four national research institutes to form the leading high-performance computing (HPC) research center in Italy. […]

Read More
The AWS Center for Quantum Computing is located on the Caltech campus in Pasadena, CA

Announcing the opening of the AWS Center for Quantum Computing

What if by harnessing the properties of quantum mechanics we could model and simulate the behavior of matter at its most fundamental level, down to how molecules interact? The machine that would make that possible would be transformative, changing what we know about science and how we probe nature for answers. Quantum computers have the […]

Read More
Mitiq Overview

Exploring quantum error mitigation with Mitiq and Amazon Braket

By Ryan LaRose, a researcher with Unitary Fund and Michigan State University; Nathan Shammah, CTO of Unitary Fund; Peter Karalekas, Software Engineer at the AWS Center for Quantum Computing; and Eric Kessler, Sr. Manager of Applied Science for Amazon Braket. In this blog post, we demonstrate how to use Mitiq, an open-source library for quantum […]

Read More
Amazon Braket

Setting up your local development environment in Amazon Braket

As a fully managed quantum computing service, Amazon Braket provides a development environment based on Jupyter notebooks for you to experiment with quantum algorithms, test them on quantum circuit simulators, and run them on different quantum hardware technologies. However, Amazon Braket does not restrict you to use only the managed notebooks and the AWS management […]

Read More
Architecture diagram for the Quantum Software Research Hub, integrated with Amazon Braket

AWS supporting the Quantum Software Research Hub led by Osaka University in Japan

Since Amazon Braket, the AWS quantum computing service, was launched, customers have said they want to learn the basics of the technology, explore quantum computing, and discuss use cases with experts in their local communities. In Japan, AWS is working with Osaka University through the Quantum Software Research Hub to educate enterprise, startup, and academic […]

Read More
BMW robotic assembly line

Exploring industrial use cases in the BMW Group Quantum Computing Challenge

Today, the BMW Group launched a global open innovation challenge focused on discovering potential quantum computing solutions for real-world use cases: The BMW Group Quantum Computing Challenge. We are delighted to collaborate with BMW on this challenge, and to invite the quantum community explore new approaches to industrial applications. It’s still early days in quantum […]

Read More
Graphic of a Wigner functions of (a) a GKP state with 10 dB GKP squeezing (b) a GKP state with 12 dB GKP squeezing.

Low-overhead quantum computing with Gottesman-Kitaev-Preskill qubits

Introduction This post summarizes a research paper from the AWS Center for Quantum Computing that proposes a direction to implement fault-tolerant quantum computers with minimal hardware overhead. This research shows that by concatenating the surface code with Gottesman, Kitaev, and Preskill (GKP) qubits, it is theoretically possible to achieve a logical error rate of 10-8 […]

Read More