AWS Machine Learning Blog

Kumar Venkateswar

Author: Kumar Venkateswar

PyTorch 1.0 preview now available in Amazon SageMaker and the AWS Deep Learning AMIs

Amazon SageMaker and the AWS Deep Learning AMIs (DLAMI) now provide an easy way to evaluate the PyTorch 1.0 preview release. PyTorch 1.0 adds seamless research-to-production capabilities, while retaining the ease-of-use that has enabled PyTorch to rapidly gain popularity. The AWS Deep Learning AMI comes pre-built with PyTorch 1.0, Anaconda, and Python packages, with CUDA and […]

Read More

AWS KMS-based Encryption Is Now Available for Training and Hosting in Amazon SageMaker

Amazon SageMaker uses throwaway keys, also called transient keys, to encrypt the ML General Purpose storage volumes attached to training and hosting EC2 instances. Because these keys are used only to encrypt the ML storage volumes and are then immediately discarded, the volumes can safely be used to store confidential data. Volumes can be accessed […]

Read More

AWS CloudTrail integration is now available in Amazon SageMaker

AWS customers have been requesting a way to log activity in Amazon SageMaker, to help you meet your governance and compliance needs. I’m happy to announce that Amazon SageMaker is now integrated with AWS CloudTrail, a service that enables you to log, continuously monitor, and retain account information related to Amazon SageMaker API activity. Amazon […]

Read More