AWS Machine Learning Blog

Category: Amazon SageMaker

Accelerate your ML lifecycle using the new and improved Amazon SageMaker Python SDK – Part 2: ModelBuilder

In Part 1 of this series, we introduced the newly launched ModelTrainer class on the Amazon SageMaker Python SDK and its benefits, and showed you how to fine-tune a Meta Llama 3.1 8B model on a custom dataset. In this post, we look at the enhancements to the ModelBuilder class, which lets you seamlessly deploy a model from ModelTrainer to a SageMaker endpoint, and provides a single interface for multiple deployment configurations.

Accelerate your ML lifecycle using the new and improved Amazon SageMaker Python SDK – Part 1: ModelTrainer

In this post, we focus on the ModelTrainer class for simplifying the training experience. The ModelTrainer class provides significant improvements over the current Estimator class, which are discussed in detail in this post. We show you how to use the ModelTrainer class to train your ML models, which includes executing distributed training using a custom script or container. In Part 2, we show you how to build a model and deploy to a SageMaker endpoint using the improved ModelBuilder class.

Pixtral 12B is now available on Amazon SageMaker JumpStart

Today, we are excited to announce that Pixtral 12B (pixtral-12b-2409), a state-of-the-art vision language model (VLM) from Mistral AI that excels in both text-only and multimodal tasks, is available for customers through Amazon SageMaker JumpStart. You can try this model with SageMaker JumpStart, a machine learning (ML) hub that provides access to algorithms and models that can be deployed with one click for running inference. In this post, we walk through how to discover, deploy, and use the Pixtral 12B model for a variety of real-world vision use cases.

solution architecture

Accelerating ML experimentation with enhanced security: AWS PrivateLink support for Amazon SageMaker with MLflow

With access to a wide range of generative AI foundation models (FM) and the ability to build and train their own machine learning (ML) models in Amazon SageMaker, users want a seamless and secure way to experiment with and select the models that deliver the most value for their business. In the initial stages of an ML […]

Mistral-NeMo-Instruct-2407 and Mistral-NeMo-Base-2407 are now available on SageMaker JumpStart

Today, we are excited to announce that Mistral-NeMo-Base-2407 and Mistral-NeMo-Instruct-2407 large language models from Mistral AI that excel at text generation, are available for customers through Amazon SageMaker JumpStart. In this post, we walk through how to discover, deploy and use the Mistral-NeMo-Instruct-2407 and Mistral-NeMo-Base-2407 models for a variety of real-world use cases.

Speed up your cluster procurement time with Amazon SageMaker HyperPod training plans

In this post, we demonstrate how you can use Amazon SageMaker HyperPod training plans, to bring down your training cluster procurement wait time. We guide you through a step-by-step implementation on how you can use the (AWS CLI) or the AWS Management Console to find, review, and create optimal training plans for your specific compute and timeline needs. We further guide you through using the training plan to submit SageMaker training jobs or create SageMaker HyperPod clusters.

Figure 2: Depicting high level architecture of Tecton & SageMaker showing end-to-end feature lifecycle

Real value, real time: Production AI with Amazon SageMaker and Tecton

In this post, we discuss how Amazon SageMaker and Tecton work together to simplify the development and deployment of production-ready AI applications, particularly for real-time use cases like fraud detection. The integration enables faster time to value by abstracting away complex engineering tasks, allowing teams to focus on building features and use cases while providing a streamlined framework for both offline training and online serving of ML models.

Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models

In this post, we explore how to deploy AI models from SageMaker JumpStart and use them with Amazon Bedrock’s powerful features. Users can combine SageMaker JumpStart’s model hosting with Bedrock’s security and monitoring tools. We demonstrate this using the Gemma 2 9B Instruct model as an example, showing how to deploy it and use Bedrock’s advanced capabilities.

Build generative AI applications quickly with Amazon Bedrock IDE in Amazon SageMaker Unified Studio

In this post, we’ll show how anyone in your company can use Amazon Bedrock IDE to quickly create a generative AI chat agent application that analyzes sales performance data. Through simple conversations, business teams can use the chat agent to extract valuable insights from both structured and unstructured data sources without writing code or managing complex data pipelines.