AWS Machine Learning Blog
Category: Learning Levels
Introducing SageMaker Core: A new object-oriented Python SDK for Amazon SageMaker
In this post, we show how the SageMaker Core SDK simplifies the developer experience while providing API for seamlessly executing various steps in a general ML lifecycle. We also discuss the main benefits of using this SDK along with sharing relevant resources to learn more about this SDK.
Create a data labeling project with Amazon SageMaker Ground Truth Plus
Amazon SageMaker Ground Truth is a powerful data labeling service offered by AWS that provides a comprehensive and scalable platform for labeling various types of data, including text, images, videos, and 3D point clouds, using a diverse workforce of human annotators. In addition to traditional custom-tailored deep learning models, SageMaker Ground Truth also supports generative […]
Improve LLM application robustness with Amazon Bedrock Guardrails and Amazon Bedrock Agents
In this post, we demonstrate how Amazon Bedrock Guardrails can improve the robustness of the agent framework. We are able to stop our chatbot from responding to non-relevant queries and protect personal information from our customers, ultimately improving the robustness of our agentic implementation with Amazon Bedrock Agents.
Unlock the knowledge in your Slack workspace with Slack connector for Amazon Q Business
In this post, we will demonstrate how to set up Slack connector for Amazon Q Business to sync communications from both public and private channels, reflective of user permissions.
Efficient Pre-training of Llama 3-like model architectures using torchtitan on Amazon SageMaker
In this post, we collaborate with the team working on PyTorch at Meta to showcase how the torchtitan library accelerates and simplifies the pre-training of Meta Llama 3-like model architectures. We showcase the key features and capabilities of torchtitan such as FSDP2, torch.compile integration, and FP8 support that optimize the training efficiency.
Automate user on-boarding for financial services with a digital assistant powered by Amazon Bedrock
In this post, we present a solution that harnesses the power of generative AI to streamline the user onboarding process for financial services through a digital assistant.
Build a generative AI Slack chat assistant using Amazon Bedrock and Amazon Kendra
In this post, we describe the development of a generative AI Slack application powered by Amazon Bedrock and Amazon Kendra. This is designed to be an internal-facing Slack chat assistant that helps answer questions related to the indexed content.
Implement model-independent safety measures with Amazon Bedrock Guardrails
In this post, we discuss how you can use the ApplyGuardrail API in common generative AI architectures such as third-party or self-hosted large language models (LLMs), or in a self-managed Retrieval Augmented Generation (RAG) architecture.
Achieve operational excellence with well-architected generative AI solutions using Amazon Bedrock
In this post, we discuss scaling up generative AI for different lines of businesses (LOBs) and address the challenges that come around legal, compliance, operational complexities, data privacy and security.
Elevate workforce productivity through seamless personalization in Amazon Q Business
In this post, we explore how Amazon Q Business uses personalization to improve the relevance of responses and how you can align your use cases and end-user data to take full advantage of this capability