AWS Big Data Blog

Category: Amazon Redshift

This architecture diagram illustrates a comprehensive, end-to-end data processing pipeline built on AWS services, orchestrated through Amazon SageMaker Unified Studio. The pipeline demonstrates best practices for data ingestion, transformation, quality validation, advanced processing, and analytics.

Orchestrate end-to-end scalable ETL pipeline with Amazon SageMaker workflows

This post explores how to build and manage a comprehensive extract, transform, and load (ETL) pipeline using SageMaker Unified Studio workflows through a code-based approach. We demonstrate how to use a single, integrated interface to handle all aspects of data processing, from preparation to orchestration, by using AWS services including Amazon EMR, AWS Glue, Amazon Redshift, and Amazon MWAA. This solution streamlines the data pipeline through a single UI.

Streamline your Amazon Redshift maintenance event notifications with Amazon Simple Notification Service

In this post, we take you through customization options for managing the schedule of your Amazon Redshift maintenance events, along with Amazon Redshift maintenance tracks for optimizing cluster performance. We also walk you through how to set up Amazon Redshift event notifications using Amazon SNS.

Modernize your data warehouse by migrating Oracle Database to Amazon Redshift with Oracle GoldenGate

In this post, we show how to migrate an Oracle data warehouse to Amazon Redshift using Oracle GoldenGate and DMS Schema Conversion, a feature of AWS Database Migration Service (AWS DMS). This approach facilitates minimal business disruption through continuous replication.

Unlock granular resource control with queue-based QMR in Amazon Redshift Serverless

With Amazon Redshift Serverless queue-based Query Monitoring Rules (QMR), administrators can define workload-aware thresholds and automated actions at the queue level—a significant improvement over previous workgroup-level monitoring. You can create dedicated queues for distinct workloads such as BI reporting, ad hoc analysis, or data engineering, then apply queue-specific rules to automatically abort, log, or restrict queries that exceed execution-time or resource-consumption limits. By isolating workloads and enforcing targeted controls, this approach protects mission-critical queries, improves performance predictability, and prevents resource monopolization—all while maintaining the flexibility of a serverless experience. In this post, we discuss how you can implement your workloads with query queues in Redshift Serverless.

AWS analytics at re:Invent 2025: Unifying Data, AI, and governance at scale

re:Invent 2025 showcased the bold Amazon Web Services (AWS) vision for the future of analytics, one where data warehouses, data lakes, and AI development converge into a seamless, open, intelligent platform, with Apache Iceberg compatibility at its core. Across over 18 major announcements spanning three weeks, AWS demonstrated how organizations can break down data silos, […]

Simplify multi-warehouse data governance with Amazon Redshift federated permissions

Amazon Redshift federated permissions simplify permissions management across multiple Redshift warehouses. In this post, we show you how to define data permissions one time and automatically enforce them across warehouses in your AWS account, removing the need to re-create security policies in each warehouse.

IPv6 addressing with Amazon Redshift

As we witness the gradual transition from IPv4 to IPv6, AWS continues to expand its support for dual-stack networking across its service portfolio. In this post, we show how you can migrate your Amazon Redshift Serverless workgroup from IPv4-only to dual-stack mode, so you can make your data warehouse future ready.