Artificial Intelligence
Category: Thought Leadership
Beyond pilots: A proven framework for scaling AI to production
In this post, we explore the Five V’s Framework—a field-tested methodology that has helped 65% of AWS Generative AI Innovation Center customer projects successfully transition from concept to production, with some launching in just 45 days. The framework provides a structured approach through Value, Visualize, Validate, Verify, and Venture phases, shifting focus from “What can AI do?” to “What do we need AI to do?” while ensuring solutions deliver measurable business outcomes and sustainable operational excellence.
Building smarter AI agents: AgentCore long-term memory deep dive
In this post, we explore how Amazon Bedrock AgentCore Memory transforms raw conversational data into persistent, actionable knowledge through sophisticated extraction, consolidation, and retrieval mechanisms that mirror human cognitive processes. The system tackles the complex challenge of building AI agents that don’t just store conversations but extract meaningful insights, merge related information across time, and maintain coherent memory stores that enable truly context-aware interactions.
Make agents a reality with Amazon Bedrock AgentCore: Now generally available
Learn why customers choose AgentCore to build secure, reliable AI solutions using their choice of frameworks and models for production workloads.
Beyond the basics: A comprehensive foundation model selection framework for generative AI
As the model landscape expands, organizations face complex scenarios when selecting the right foundation model for their applications. In this blog post we present a systematic evaluation methodology for Amazon Bedrock users, combining theoretical frameworks with practical implementation strategies that empower data scientists and machine learning (ML) engineers to make optimal model selections.
Demystifying Amazon Bedrock Pricing for a Chatbot Assistant
In this post, we’ll look at Amazon Bedrock pricing through the lens of a practical, real-world example: building a customer service chatbot. We’ll break down the essential cost components, walk through capacity planning for a mid-sized call center implementation, and provide detailed pricing calculations across different foundation models.
Enabling customers to deliver production-ready AI agents at scale
Today, I’m excited to share how we’re bringing this vision to life with new capabilities that address the fundamental aspects of building and deploying agents at scale. These innovations will help you move beyond experiments to production-ready agent systems that can be trusted with your most critical business processes.
Tailor responsible AI with new safeguard tiers in Amazon Bedrock Guardrails
In this post, we introduce the new safeguard tiers available in Amazon Bedrock Guardrails, explain their benefits and use cases, and provide guidance on how to implement and evaluate them in your AI applications.
Architect a mature generative AI foundation on AWS
In this post, we give an overview of a well-established generative AI foundation, dive into its components, and present an end-to-end perspective. We look at different operating models and explore how such a foundation can operate within those boundaries. Lastly, we present a maturity model that helps enterprises assess their evolution path.
Insights in implementing production-ready solutions with generative AI
As generative AI revolutionizes industries, organizations are eager to harness its potential. However, the journey from production-ready solutions to full-scale implementation can present distinct operational and technical considerations. This post explores key insights and lessons learned from AWS customers in Europe, Middle East, and Africa (EMEA) who have successfully navigated this transition, providing a roadmap for others looking to follow suit.
InterVision accelerates AI development using AWS LLM League and Amazon SageMaker AI
This post demonstrates how AWS LLM League’s gamified enablement accelerates partners’ practical AI development capabilities, while showcasing how fine-tuning smaller language models can deliver cost-effective, specialized solutions for specific industry needs.









