AWS Machine Learning Blog

Category: Thought Leadership

Evaluate conversational AI agents with Amazon Bedrock

As conversational artificial intelligence (AI) agents gain traction across industries, providing reliability and consistency is crucial for delivering seamless and trustworthy user experiences. However, the dynamic and conversational nature of these interactions makes traditional testing and evaluation methods challenging. Conversational AI agents also encompass multiple layers, from Retrieval Augmented Generation (RAG) to function-calling mechanisms that […]

LLM evaluation and selection journey

LLM experimentation at scale using Amazon SageMaker Pipelines and MLflow

Large language models (LLMs) have achieved remarkable success in various natural language processing (NLP) tasks, but they may not always generalize well to specific domains or tasks. You may need to customize an LLM to adapt to your unique use case, improving its performance on your specific dataset or task. You can customize the model […]

Empowering everyone with GenAI to rapidly build, customize, and deploy apps securely: Highlights from the AWS New York Summit

See how AWS is democratizing generative AI with innovations like Amazon Q Apps to make AI apps from prompts, Amazon Bedrock upgrades to leverage more data sources, new techniques to curtail hallucinations, and AI skills training.

A progress update on our commitment to safe, responsible generative AI

Responsible AI is a longstanding commitment at Amazon. From the outset, we have prioritized responsible AI innovation by embedding safety, fairness, robustness, security, and privacy into our development processes and educating our employees. We strive to make our customers’ lives better while also establishing and implementing the necessary safeguards to help protect them. Our practical […]

Build generative AI applications on Amazon Bedrock — the secure, compliant, and responsible foundation

Generative AI has revolutionized industries by creating content, from text and images to audio and code. Although it can unlock numerous possibilities, integrating generative AI into applications demands meticulous planning. Amazon Bedrock is a fully managed service that provides access to large language models (LLMs) and other foundation models (FMs) from leading AI companies through a […]

Code generation using Code Llama 70B and Mixtral 8x7B on Amazon SageMaker

In the ever-evolving landscape of machine learning and artificial intelligence (AI), large language models (LLMs) have emerged as powerful tools for a wide range of natural language processing (NLP) tasks, including code generation. Among these cutting-edge models, Code Llama 70B stands out as a true heavyweight, boasting an impressive 70 billion parameters. Developed by Meta […]

AIML CoE Framework

Establishing an AI/ML center of excellence

The rapid advancements in artificial intelligence and machine learning (AI/ML) have made these technologies a transformative force across industries. According to a McKinsey study, across the financial services industry (FSI), generative AI is projected to deliver over $400 billion (5%) of industry revenue in productivity benefits. As maintained by Gartner, more than 80% of enterprises […]

Amazon SageMaker now integrates with Amazon DataZone to streamline machine learning governance

Unlock ML governance with SageMaker-DataZone integration: streamline infrastructure, collaborate, and govern data/ML assets.

Simple guide to training Llama 2 with AWS Trainium on Amazon SageMaker

Large language models (LLMs) are making a significant impact in the realm of artificial intelligence (AI). Their impressive generative abilities have led to widespread adoption across various sectors and use cases, including content generation, sentiment analysis, chatbot development, and virtual assistant technology. Llama2 by Meta is an example of an LLM offered by AWS. Llama […]

Automate chatbot for document and data retrieval using Amazon Bedrock Agents and Knowledge Bases

Numerous customers face challenges in managing diverse data sources and seek a chatbot solution capable of orchestrating these sources to offer comprehensive answers. This post presents a solution for developing a chatbot capable of answering queries from both documentation and databases, with straightforward deployment. Amazon Bedrock is a fully managed service that offers a choice […]