AWS AI Blog

Tag: Amazon EMR

Distributed Inference Using Apache MXNet and Apache Spark on Amazon EMR

In this blog post we demonstrate how to run distributed offline inference on large datasets using Apache MXNet (incubating) and Apache Spark on Amazon EMR. We explain how offline inference is useful, why it is challenging, and how you can leverage MXNet and Spark on Amazon EMR to overcome these challenges. Distributed inference on large […]

Read More

Run Deep Learning Frameworks with GPU Instance Types on Amazon EMR

Today, AWS is excited to announce support for Apache MXNet and new generation GPU instance types on Amazon EMR, which enables you to run distributed deep neural networks alongside your machine learning workflows and big data processing. Additionally, you can install and run custom deep learning libraries on your EMR clusters with GPU hardware. Through […]

Read More

Build PMML-based Applications and Generate Predictions in AWS

by Gitansh Chadha | on | Permalink | Comments |  Share

If you generate machine learning (ML) models, you know that the key challenge is exporting and importing them into other frameworks to separate model generation and prediction. Many applications use PMML (Predictive Model Markup Language) to move ML models from one framework to another. PMML is an XML representation of a data mining model. In […]

Read More