AWS Machine Learning Blog

Category: Amazon Lex

architecture diagram

Enhance your customer’s omnichannel experience with Amazon Bedrock and Amazon Lex

In this post, we show you how to set up Amazon Lex for an omnichannel chatbot experience and Amazon Bedrock to be your secondary validation layer. This allows your customers to potentially provide out-of-band responses both at the intent and slot collection levels without having to be re-prompted, allowing for a seamless customer experience.

Using transcription confidence scores to improve slot filling in Amazon Lex

When building voice-enabled chatbots with Amazon Lex, one of the biggest challenges is accurately capturing user speech input for slot values. Transcription confidence scores can help ensure reliable slot filling. This blog post outlines strategies like progressive confirmation, adaptive re-prompting, and branching logic to create more robust slot filling experiences.

Achieve multi-Region resiliency for your conversational AI chatbots with Amazon Lex

Global Resiliency is a new Amazon Lex capability that enables near real-time replication of your Amazon Lex V2 bots in a second AWS Region. When you activate this feature, all resources, versions, and aliases associated after activation will be synchronized across the chosen Regions. With Global Resiliency, the replicated bot resources and aliases in the […]

Create a next generation chat assistant with Amazon Bedrock, Amazon Connect, Amazon Lex, LangChain, and WhatsApp

Create a next generation chat assistant with Amazon Bedrock, Amazon Connect, Amazon Lex, LangChain, and WhatsApp

In this post, we demonstrate how to deploy a contextual AI assistant. We build a solution which provides users with a familiar and convenient interface using Amazon Bedrock Knowledge Bases, Amazon Lex, and Amazon Connect, with WhatsApp as the channel.

Evaluate conversational AI agents with Amazon Bedrock

As conversational artificial intelligence (AI) agents gain traction across industries, providing reliability and consistency is crucial for delivering seamless and trustworthy user experiences. However, the dynamic and conversational nature of these interactions makes traditional testing and evaluation methods challenging. Conversational AI agents also encompass multiple layers, from Retrieval Augmented Generation (RAG) to function-calling mechanisms that […]

Detect and protect sensitive data with Amazon Lex and Amazon CloudWatch Logs

In today’s digital landscape, the protection of personally identifiable information (PII) is not just a regulatory requirement, but a cornerstone of consumer trust and business integrity. Organizations use advanced natural language detection services like Amazon Lex for building conversational interfaces and Amazon CloudWatch for monitoring and analyzing operational data. One risk many organizations face is […]

Build a self-service digital assistant using Amazon Lex and Amazon Bedrock Knowledge Bases

Organizations strive to implement efficient, scalable, cost-effective, and automated customer support solutions without compromising the customer experience. Generative artificial intelligence (AI)-powered chatbots play a crucial role in delivering human-like interactions by providing responses from a knowledge base without the involvement of live agents. These chatbots can be efficiently utilized for handling generic inquiries, freeing up […]

Implement exact match with Amazon Lex QnAIntent

This post is a continuation of Creating Natural Conversations with Amazon Lex QnAIntent and Amazon Bedrock Knowledge Base. In summary, we explored new capabilities available through Amazon Lex QnAIntent, powered by Amazon Bedrock, that enable you to harness natural language understanding and your own knowledge repositories to provide real-time, conversational experiences. In many cases, Amazon […]

Create natural conversations with Amazon Lex QnAIntent and Amazon Bedrock Knowledge Bases

Customer service organizations today face an immense opportunity. As customer expectations grow, brands have a chance to creatively apply new innovations to transform the customer experience. Although meeting rising customer demands poses challenges, the latest breakthroughs in conversational artificial intelligence (AI) empowers companies to meet these expectations. Customers today expect timely responses to their questions […]