Artificial Intelligence

Category: Amazon Machine Learning

Advancing AI agent governance with Boomi and AWS: A unified approach to observability and compliance

In this post, we share how Boomi partnered with AWS to help enterprises accelerate and scale AI adoption with confidence using Agent Control Tower.

Accelerating AI innovation: Scale MCP servers for enterprise workloads with Amazon Bedrock

In this post, we present a centralized Model Context Protocol (MCP) server implementation using Amazon Bedrock that provides shared access to tools and resources for enterprise AI workloads. The solution enables organizations to accelerate AI innovation by standardizing access to resources and tools through MCP, while maintaining security and governance through a centralized approach.

Choosing the right approach for generative AI-powered structured data retrieval

In this post, we explore five different patterns for implementing LLM-powered structured data query capabilities in AWS, including direct conversational interfaces, BI tool enhancements, and custom text-to-SQL solutions.

Context extraction from image files in Amazon Q Business using LLMs

In this post, we look at a step-by-step implementation for using the custom document enrichment (CDE) feature within an Amazon Q Business application to process standalone image files. We walk you through an AWS Lambda function configured within CDE to process various image file types, and showcase an example scenario of how this integration enhances Amazon Q Business’s ability to provide comprehensive insights.

Tailor responsible AI with new safeguard tiers in Amazon Bedrock Guardrails

In this post, we introduce the new safeguard tiers available in Amazon Bedrock Guardrails, explain their benefits and use cases, and provide guidance on how to implement and evaluate them in your AI applications.

Structured data response with Amazon Bedrock: Prompt Engineering and Tool Use

We demonstrate two methods for generating structured responses with Amazon Bedrock: Prompt Engineering and Tool Use with the Converse API. Prompt Engineering is flexible, works with Bedrock models (including those without Tool Use support), and handles various schema types (e.g., Open API schemas), making it a great starting point. Tool Use offers greater reliability, consistent results, seamless API integration, and runtime validation of JSON schema for enhanced control.

Build an intelligent multi-agent business expert using Amazon Bedrock

In this post, we demonstrate how to build a multi-agent system using multi-agent collaboration in Amazon Bedrock Agents to solve complex business questions in the biopharmaceutical industry. We show how specialized agents in research and development (R&D), legal, and finance domains can work together to provide comprehensive business insights by analyzing data from multiple sources.

AWS claims summarization workflow diagram integrating data preprocessing, queuing, AI processing, and storage services

Driving cost-efficiency and speed in claims data processing with Amazon Nova Micro and Amazon Nova Lite

In this post, we shared how an internal technology team at Amazon evaluated Amazon Nova models, resulting in notable improvements in inference speed and cost-efficiency.