Artificial Intelligence
Category: Amazon SageMaker
MLOps deployment best practices for real-time inference model serving endpoints with Amazon SageMaker
After you build, train, and evaluate your machine learning (ML) model to ensure it’s solving the intended business problem proposed, you want to deploy that model to enable decision-making in business operations. Models that support business-critical functions are deployed to a production environment where a model release strategy is put in place. Given the nature […]
Fine-tune text-to-image Stable Diffusion models with Amazon SageMaker JumpStart
March 2023: This blog was reviewed and updated with AMT HPO support for finetuning text-to-image Stable Diffusion models. In November 2022, we announced that AWS customers can generate images from text with Stable Diffusion models in Amazon SageMaker JumpStart. Stable Diffusion is a deep learning model that allows you to generate realistic, high-quality images and […]
Implementing MLOps practices with Amazon SageMaker JumpStart pre-trained models
Amazon SageMaker JumpStart is the machine learning (ML) hub of SageMaker that offers over 350 built-in algorithms, pre-trained models, and pre-built solution templates to help you get started with ML fast. JumpStart provides one-click access to a wide variety of pre-trained models for common ML tasks such as object detection, text classification, summarization, text generation […]
Configure an AWS DeepRacer environment for training and log analysis using the AWS CDK
This post is co-written by Zdenko Estok, Cloud Architect at Accenture and Sakar Selimcan, DeepRacer SME at Accenture. With the increasing use of artificial intelligence (AI) and machine learning (ML) for a vast majority of industries (ranging from healthcare to insurance, from manufacturing to marketing), the primary focus shifts to efficiency when building and training […]
Identifying defense coverage schemes in NFL’s Next Gen Stats
This post is co-written with Jonathan Jung, Mike Band, Michael Chi, and Thompson Bliss at the National Football League. A coverage scheme refers to the rules and responsibilities of each football defender tasked with stopping an offensive pass. It is at the core of understanding and analyzing any football defensive strategy. Classifying the coverage scheme […]
Monitoring Lake Mead drought using the new Amazon SageMaker geospatial capabilities
Earth’s changing climate poses an increased risk of drought due to global warming. Since 1880, the global temperature has increased 1.01 °C. Since 1993, sea levels have risen 102.5 millimeters. Since 2002, the land ice sheets in Antarctica have been losing mass at a rate of 151.0 billion metric tons per year. In 2022, the […]
Optimize your machine learning deployments with auto scaling on Amazon SageMaker
Machine learning (ML) has become ubiquitous. Our customers are employing ML in every aspect of their business, including the products and services they build, and for drawing insights about their customers. To build an ML-based application, you have to first build the ML model that serves your business requirement. Building ML models involves preparing the […]
Share medical image research on Amazon SageMaker Studio Lab for free
This post is co-written with Stephen Aylward, Matt McCormick, Brianna Major from Kitware and Justin Kirby from the Frederick National Laboratory for Cancer Research (FNLCR). Amazon SageMaker Studio Lab provides no-cost access to a machine learning (ML) development environment to everyone with an email address. Like the fully featured Amazon SageMaker Studio, Studio Lab allows […]
Amazon SageMaker Automatic Model Tuning now supports three new completion criteria for hyperparameter optimization
Amazon SageMaker has announced the support of three new completion criteria for Amazon SageMaker automatic model tuning, providing you with an additional set of levers to control the stopping criteria of the tuning job when finding the best hyperparameter configuration for your model. In this post, we discuss these new completion criteria, when to use them, and […]
Image classification model selection using Amazon SageMaker JumpStart
Researchers continue to develop new model architectures for common machine learning (ML) tasks. One such task is image classification, where images are accepted as input and the model attempts to classify the image as a whole with object label outputs. With many models available today that perform this image classification task, an ML practitioner may […]