AWS Machine Learning Blog
Category: AWS Cloud Financial Management
Governing ML lifecycle at scale: Best practices to set up cost and usage visibility of ML workloads in multi-account environments
Cloud costs can significantly impact your business operations. Gaining real-time visibility into infrastructure expenses, usage patterns, and cost drivers is essential. To allocate costs to cloud resources, a tagging strategy is essential. This post outlines steps you can take to implement a comprehensive tagging governance strategy across accounts, using AWS tools and services that provide visibility and control. By setting up automated policy enforcement and checks, you can achieve cost optimization across your machine learning (ML) environment.
Identify idle endpoints in Amazon SageMaker
Amazon SageMaker is a machine learning (ML) platform designed to simplify the process of building, training, deploying, and managing ML models at scale. With a comprehensive suite of tools and services, SageMaker offers developers and data scientists the resources they need to accelerate the development and deployment of ML solutions. In today’s fast-paced technological landscape, […]
Analyze Amazon SageMaker spend and determine cost optimization opportunities based on usage, Part 5: Hosting
In 2021, we launched AWS Support Proactive Services as part of the AWS Enterprise Support plan. Since its introduction, we have helped hundreds of customers optimize their workloads, set guardrails, and improve visibility of their machine learning (ML) workloads’ cost and usage. In this series of posts, we share lessons learned about optimizing costs in […]
Analyze Amazon SageMaker spend and determine cost optimization opportunities based on usage, Part 4: Training jobs
In 2021, we launched AWS Support Proactive Services as part of the AWS Enterprise Support plan. Since its introduction, we’ve helped hundreds of customers optimize their workloads, set guardrails, and improve the visibility of their machine learning (ML) workloads’ cost and usage. In this series of posts, we share lessons learned about optimizing costs in […]
Analyze Amazon SageMaker spend and determine cost optimization opportunities based on usage, Part 3: Processing and Data Wrangler jobs
In 2021, we launched AWS Support Proactive Services as part of the AWS Enterprise Support plan. Since its introduction, we’ve helped hundreds of customers optimize their workloads, set guardrails, and improve the visibility of their machine learning (ML) workloads’ cost and usage. In this series of posts, we share lessons learned about optimizing costs in […]
Analyze Amazon SageMaker spend and determine cost optimization opportunities based on usage, Part 2: SageMaker notebooks and Studio
In 2021, we launched AWS Support Proactive Services as part of the AWS Enterprise Support offering. Since its introduction, we have helped hundreds of customers optimize their workloads, set guardrails, and improve the visibility of their machine learning (ML) workloads’ cost and usage. In this series of posts, we share lessons learned about optimizing costs […]
Analyze Amazon SageMaker spend and determine cost optimization opportunities based on usage, Part 1
Cost optimization is one of the pillars of the AWS Well-Architected Framework, and it’s a continual process of refinement and improvement over the span of a workload’s lifecycle. It enables building and operating cost-aware systems that minimize costs, maximize return on investment, and achieve business outcomes. Amazon SageMaker is a fully managed machine learning (ML) […]
Forecasting AWS spend using the AWS Cost and Usage Reports, AWS Glue DataBrew, and Amazon Forecast
AWS Cost Explorer enables you to view and analyze your AWS Cost and Usage Reports (AWS CUR). You can also predict your overall cost associated with AWS services in the future by creating a forecast of AWS Cost Explorer, but you can’t view historical data beyond 12 months. Moreover, running custom machine learning (ML) models […]