AWS Machine Learning Blog

Category: Amazon DynamoDB

Saving time with personalized videos using AWS machine learning

CLIPr aspires to help save 1 billion hours of people’s time. We organize video into a first-class, searchable data source that unlocks the content most relevant to your interests using AWS machine learning (ML) services. CLIPr simplifies the extraction of information in videos, saving you hours by eliminating the need to skim through them manually […]

Accelerating innovation: How serverless machine learning on AWS powers F1 Insights

FORMULA 1 (F1) turns 70 years old in 2020 and is one of the few sports that combines real-time skill with engineering and technical prowess. Technology has always played a central role in F1; where the evolution of the rules and tools is built into the DNA of F1. This keeps fans engaged and drivers […]

The tech behind the Bundesliga Match Facts xGoals: How machine learning is driving data-driven insights in soccer

It’s quite common to be watching a soccer match and, when seeing a player score a goal, surmise how difficult scoring that goal was. Your opinions may be further confirmed if you’re watching the match on television and hear the broadcaster exclaim how hard it was for that shot to find the back of the […]

Turning unstructured text into insights with Bewgle powered by AWS

Bewgle is an SAP.iO, Techstars-funded company that uses AWS services to surface insights from user-generated text and audio streams. Bewgle generates insights to help product managers to increase customer satisfaction and engagement with their various products—beauty, electronics, or anything in between.  By listening to the voices of their customers with the help of Bewgle powered […]

Anomaly detection on Amazon DynamoDB Streams using the Amazon SageMaker Random Cut Forest algorithm

Have you considered introducing anomaly detection technology to your business? Anomaly detection is a technique used to identify rare items, events, or observations which raise suspicion by differing significantly from the majority of the data you are analyzing.  The applications of anomaly detection are wide-ranging including the detection of abnormal purchases or cyber intrusions in […]