AWS HPC Blog
Category: Customer Solutions
How Amazon’s Search M5 team optimizes compute resources and cost with fair-share scheduling on AWS Batch
In this post, we share how Amazon Search optimizes their use of accelerated compute resources using AWS Batch fair-share scheduling to schedule distributed deep learning workloads.
Improving NFL player health using machine learning with AWS Batch
In this post we’ll show you how the NFL used AWS to scale their ML workloads and produce the first comprehensive dataset of helmet impacts across multiple NFL seasons. They were able to reduce manual labor by 90% and the results beats human labelers in accuracy by 12%!
Deploying predictive models and simulations at scale using TwinFlow on AWS
AWS TwinFlow is an open source framework to build and deploy predictive models using heterogenous compute pipelines on AWS. In this post, we show the versatility of the framework with examples of engineering design, scenario analysis, systems analysis, and digital twins.
Streamlining distributed ML workflow orchestration using Covalent with AWS Batch
Complicated multi-step workflows can be challenging to deploy, especially when using a variety of high-compute resources. Covalent is an open-source orchestration tool that streamlines the deployment of distributed workloads on AWS resources. In this post, we outline key concepts in Covalent and develop a machine learning workflow for AWS Batch in just a handful of steps.
Building a 4x faster and more scalable algorithm using AWS Batch for Amazon Logistics
In this post, AWS Professional Services highlights how they helped data scientists from Amazon Logistics rearchitect their algorithm for improving the efficiency of their supply-chain by making better planning decisions. Leveraging best practices for deploying scalable HPC applications on AWS, the teams saw a 4X improvement in run time.
Running accurate, comprehensive, and efficient genomics workflows on AWS using Illumina DRAGEN v4.0
In this blog, we provide a walkthrough of running Illumina DRAGEN v4.0 genomic analysis pipelines on AWS, showing accuracy and efficiency, copy number analysis, structural variants, SMN callers, repeat expansion detection, and pharmacogenomics insights for complex genes. We also highlight some benchmarking results for runtime, cost, and concordance from the Illumina DRAGEN DNA sequencing pipeline.
Massively-scaling quantum chemistry to support a circular economy
As a part of AWS’s “Digital Technologies for a Circular Economy” initiative, we joined forces with Accenture, Intel and Good Chemistry to massively scale quantum chemistry simulations. This is the first and most complex step to discovering new pathways for PFAS destruction for a cleaner world.
Cost-effective and accurate genomics analysis with Sentieon on AWS
In this blog post, we benchmark the performance of Sentieon’s DNAseq and DNAscope pipelines using publicly available genomics datasets on AWS. You will gain an understanding of the runtime, cost, and accuracy performance of these germline variant calling pipelines across a wide range of Amazon EC2 instances.
Helping bioinformaticians transition to running workloads on AWS
Calling budding bioinformaticians! If you learn through hands-on practicals and walkthroughs, AWS and GIS have developed training and resources to help you increase the scale and productivity of your research using the AWS cloud.
Accelerating Genomics Pipelines Using Intel’s Open Omics Acceleration Framework on AWS
In this blog, we showcase the first version of Open Omics and benchmark three applications that are used in processing NGS data – sequence alignment tools BWA-MEM, minimap2, and single cell ATAC-Seq on Xeon-based Amazon Elastic Compute Cloud (Amazon EC2) Instances.