AWS Machine Learning Blog
Category: Amazon SageMaker JumpStart
Deploy RAG applications on Amazon SageMaker JumpStart using FAISS
In this post, we show how to build a RAG application on Amazon SageMaker JumpStart using Facebook AI Similarity Search (FAISS).
Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models
In this post, we explore how to deploy AI models from SageMaker JumpStart and use them with Amazon Bedrock’s powerful features. Users can combine SageMaker JumpStart’s model hosting with Bedrock’s security and monitoring tools. We demonstrate this using the Gemma 2 9B Instruct model as an example, showing how to deploy it and use Bedrock’s advanced capabilities.
Embodied AI Chess with Amazon Bedrock
In this post, we demonstrate Embodied AI Chess with Amazon Bedrock, bringing a new dimension to traditional chess through generative AI capabilities. Our setup features a smart chess board that can detect moves in real time, paired with two robotic arms executing those moves. Each arm is controlled by different FMs—base or custom. This physical implementation allows you to observe and experiment with how different generative AI models approach complex gaming strategies in real-world chess matches.
Deploy Meta Llama 3.1 models cost-effectively in Amazon SageMaker JumpStart with AWS Inferentia and AWS Trainium
We’re excited to announce the availability of Meta Llama 3.1 8B and 70B inference support on AWS Trainium and AWS Inferentia instances in Amazon SageMaker JumpStart. Trainium and Inferentia, enabled by the AWS Neuron software development kit (SDK), offer high performance and lower the cost of deploying Meta Llama 3.1 by up to 50%. In this post, we demonstrate how to deploy Meta Llama 3.1 on Trainium and Inferentia instances in SageMaker JumpStart.
John Snow Labs Medical LLMs are now available in Amazon SageMaker JumpStart
Today, we are excited to announce that John Snow Labs’ Medical LLM – Small and Medical LLM – Medium large language models (LLMs) are now available on Amazon SageMaker Jumpstart. For medical doctors, this tool provides a rapid understanding of a patient’s medical journey, aiding in timely and informed decision-making from extensive documentation. This summarization capability not only boosts efficiency but also makes sure that no critical details are overlooked, thereby supporting optimal patient care and enhancing healthcare outcomes.
Cohere Embed multimodal embeddings model is now available on Amazon SageMaker JumpStart
The Cohere Embed multimodal embeddings model is now generally available on Amazon SageMaker JumpStart. This model is the newest Cohere Embed 3 model, which is now multimodal and capable of generating embeddings from both text and images, enabling enterprises to unlock real value from their vast amounts of data that exist in image form. In this post, we discuss the benefits and capabilities of this new model with some examples.
Fine-tune multimodal models for vision and text use cases on Amazon SageMaker JumpStart
In this post, we showcase how to fine-tune a text and vision model, such as Meta Llama 3.2, to better perform at visual question answering tasks. The Meta Llama 3.2 Vision Instruct models demonstrated impressive performance on the challenging DocVQA benchmark for visual question answering. By using the power of Amazon SageMaker JumpStart, we demonstrate the process of adapting these generative AI models to excel at understanding and responding to natural language questions about images.
Understanding prompt engineering: Unlock the creative potential of Stability AI models on AWS
Stability AI’s newest launch of Stable Diffusion 3.5 Large (SD3.5L) on Amazon SageMaker JumpStart enhances image generation, human anatomy rendering, and typography by producing more diverse outputs and adhering closely to user prompts, making it a significant upgrade over its predecessor. In this post, we explore advanced prompt engineering techniques that can enhance the performance of these models and facilitate the creation of compelling imagery through text-to-image transformations.
Introducing Stable Diffusion 3.5 Large in Amazon SageMaker JumpStart
We are excited to announce the availability of Stability AI’s latest and most advanced text-to-image model, Stable Diffusion 3.5 Large, in Amazon SageMaker JumpStart. In this post, we provide an implementation guide for subscribing to Stable Diffusion 3.5 Large in SageMaker JumpStart, deploying the model in Amazon SageMaker Studio, and generating images using text-to-image prompts.
Fine-tune Meta Llama 3.2 text generation models for generative AI inference using Amazon SageMaker JumpStart
In this post, we demonstrate how to fine-tune Meta’s latest Llama 3.2 text generation models, Llama 3.2 1B and 3B, using Amazon SageMaker JumpStart for domain-specific applications. By using the pre-built solutions available in SageMaker JumpStart and the customizable Meta Llama 3.2 models, you can unlock the models’ enhanced reasoning, code generation, and instruction-following capabilities to tailor them for your unique use cases.