AWS Machine Learning Blog
Category: Amazon SageMaker JumpStart
Fine-tune Llama 3 for text generation on Amazon SageMaker JumpStart
In this post, we demonstrate how to fine-tune the recently released Llama 3 models from Meta, specifically the llama-3-8b and llama-3-70b variants, using Amazon SageMaker JumpStart.
Best practices for prompt engineering with Meta Llama 3 for Text-to-SQL use cases
In this post, we explore a solution that uses the vector engine ChromaDB and Meta Llama 3, a publicly available foundation model hosted on SageMaker JumpStart, for a Text-to-SQL use case. We shared a brief history of Meta Llama 3, best practices for prompt engineering with Meta Llama 3 models, and an architecture pattern using few-shot prompting and RAG to extract the relevant schemas stored as vectors in ChromaDB.
Snowflake Arctic models are now available in Amazon SageMaker JumpStart
Today, we are excited to announce that the Snowflake Arctic Instruct model is available through Amazon SageMaker JumpStart to deploy and run inference. In this post, we walk through how to discover and deploy the Snowflake Arctic Instruct model using SageMaker JumpStart, and provide example use cases with specific prompts.
Fine-tune Meta Llama 3.1 models for generative AI inference using Amazon SageMaker JumpStart
Fine-tuning Meta Llama 3.1 models with Amazon SageMaker JumpStart enables developers to customize these publicly available foundation models (FMs). The Meta Llama 3.1 collection represents a significant advancement in the field of generative artificial intelligence (AI), offering a range of capabilities to create innovative applications. The Meta Llama 3.1 models come in various sizes, with 8 billion, 70 billion, and 405 billion parameters, catering to diverse project needs. In this post, we demonstrate how to fine-tune Meta Llama 3-1 pre-trained text generation models using SageMaker JumpStart.
Cohere Rerank 3 Nimble now generally available on Amazon SageMaker JumpStart
The Cohere Rerank 3 Nimble foundation model (FM) is now generally available in Amazon SageMaker JumpStart. This model is the newest FM in Cohere’s Rerank model series, built to enhance enterprise search and Retrieval Augmented Generation (RAG) systems. In this post, we discuss the benefits and capabilities of this new model with some examples. Overview […]
Monks boosts processing speed by four times for real-time diffusion AI image generation using Amazon SageMaker and AWS Inferentia2
This post is co-written with Benjamin Moody from Monks. Monks is the global, purely digital, unitary operating brand of S4Capital plc. With a legacy of innovation and specialized expertise, Monks combines an extraordinary range of global marketing and technology services to accelerate business possibilities and redefine how brands and businesses interact with the world. Its […]
Boosting Salesforce Einstein’s code generating model performance with Amazon SageMaker
This post is a joint collaboration between Salesforce and AWS and is being cross-published on both the Salesforce Engineering Blog and the AWS Machine Learning Blog. Salesforce, Inc. is an American cloud-based software company headquartered in San Francisco, California. It provides customer relationship management (CRM) software and applications focused on sales, customer service, marketing automation, […]
Use Llama 3.1 405B for synthetic data generation and distillation to fine-tune smaller models
Today, we are excited to announce the availability of the Llama 3.1 405B model on Amazon SageMaker JumpStart, and Amazon Bedrock in preview. The Llama 3.1 models are a collection of state-of-the-art pre-trained and instruct fine-tuned generative artificial intelligence (AI) models in 8B, 70B, and 405B sizes. Amazon SageMaker JumpStart is a machine learning (ML) hub that provides access to algorithms, models, and ML solutions so you can quickly get started with ML. Amazon Bedrock offers a straightforward way to build and scale generative AI applications with Meta Llama models, using a single API.
Llama 3.1 models are now available in Amazon SageMaker JumpStart
Today, we are excited to announce that the state-of-the-art Llama 3.1 collection of multilingual large language models (LLMs), which includes pre-trained and instruction tuned generative AI models in 8B, 70B, and 405B sizes, is available through Amazon SageMaker JumpStart to deploy for inference. Llama is a publicly accessible LLM designed for developers, researchers, and businesses to build, experiment, and responsibly scale their generative artificial intelligence (AI) ideas. In this post, we walk through how to discover and deploy Llama 3.1 models using SageMaker JumpStart.
Achieve up to ~2x higher throughput while reducing costs by up to ~50% for generative AI inference on Amazon SageMaker with the new inference optimization toolkit – Part 2
As generative artificial intelligence (AI) inference becomes increasingly critical for businesses, customers are seeking ways to scale their generative AI operations or integrate generative AI models into existing workflows. Model optimization has emerged as a crucial step, allowing organizations to balance cost-effectiveness and responsiveness, improving productivity. However, price-performance requirements vary widely across use cases. For […]