AWS Machine Learning Blog

Tag: Apache MXNet

Introducing Gluon — An Easy-to-Use Programming Interface for Flexible Deep Learning

Today, AWS and Microsoft announced a new specification that focuses on improving the speed, flexibility, and accessibility of machine learning technology for all developers, regardless of their deep learning framework of choice. The first result of this collaboration is the new Gluon interface, an open source library in Apache MXNet that allows developers of all skill levels to prototype, […]

Read More

Introducing NNVM Compiler: A New Open End-to-End Compiler for AI Frameworks

You can choose among multiple artificial intelligence (AI) frameworks to develop AI algorithms. You also have a choice of a wide range of hardware to train and deploy AI models. The diversity of frameworks and hardware is crucial to maintaining the health of the AI ecosystem. This diversity, however, also introduces several challenges to AI […]

Read More

Build an Autonomous Vehicle on AWS and Race It at the re:Invent Robocar Rally

Autonomous vehicles are poised to take to our roads in massive numbers in the coming years. This has been made possible due to advances in deep learning and its application to autonomous driving. In this post, we take you through a tutorial that shows you how to build a remote control (RC) vehicle that uses […]

Read More

Bring Machine Learning to iOS apps using Apache MXNet and Apple Core ML

With the release of Core ML by Apple at WWDC 2017, iOS, macOS, watchOS and tvOS developers can now easily integrate a machine learning model into their app. This enables developers to bring intelligent new features to users with just a few lines of code. Core ML makes machine learning more accessible to mobile developers. […]

Read More

Apple Core ML and Keras Support Now Available for Apache MXNet

We’re excited about the availability of Apache MXNet version 0.11. With this release, MXNet hit major milestones, both in terms of community development and as an incubating Apache project. Contributors—including developers from Apple, Samsung and Microsoft—committed code to this release. There are over 400 contributors on the project so far. The project has now fully […]

Read More

Benchmarking Training Time for CNN-based Detectors with Apache MXNet

by Iris Fu and Cambron Carter | on | Permalink | Comments |  Share

This is a guest post by Cambron Carter, Director of Engineering, and Iris Fu, Computer Vision Scientist at GumGum. In their own words, “GumGum is an artificial intelligence company with deep expertise in computer vision, which helps their customers unlock the value of images and videos produced daily across the web, social media, and broadcast […]

Read More

Apache MXNet Release Candidate Introduces Support for Apple’s Core ML and Keras v1.2

by Cynthya Peranandam | on | Permalink | Comments |  Share

Apache MXNet is an effort undergoing incubation at the Apache Software Foundation (ASF). Last week, the MXNet community introduced a release candidate for MXNet v0.11.0, its first as an incubating project, and the community is now voting on whether to accept this candidate as a release. It includes the following major feature enhancements: A Core […]

Read More

Estimating the Location of Images Using Apache MXNet and Multimedia Commons Dataset on AWS EC2

by Jaeyoung Choi and Kevin Li | on | Permalink | Comments |  Share

This is a guest post by Jaeyoung Choi of the International Computer Science Institute and Kevin Li of the University of California, Berkeley. This project demonstrates how academic researchers can leverage our AWS Cloud Credits for Research Program to support their scientific breakthroughs. Modern mobile devices can automatically assign geo-coordinates to images when you take pictures of […]

Read More

The AWS Deep Learning AMI for Ubuntu is Now Available with CUDA 8, Ubuntu 16, and the Latest Versions of Deep Learning Frameworks

by Cynthya Peranandam | on | Permalink | Comments |  Share

The AWS Deep Learning AMI lets you build and scale deep learning applications in the cloud, at any scale. The AMI comes pre-installed with popular deep learning frameworks, to let you to train sophisticated, custom AI models, experiment with new algorithms, or to learn new skills and techniques. The latest release of the AWS Deep […]

Read More

Train Neural Machine Translation Models with Sockeye

by Felix Hieber and Tobias Domhan | on | Permalink | Comments |  Share

Have you ever wondered how you can use machine learning (ML) for translation? With our new framework, Sockeye, you can model machine translation (MT) and other sequence-to-sequence tasks. Sockeye, which is built on Apache MXNet, does most of the heavy lifting for building, training, and running state-of-the-art sequence-to-sequence models. In natural language processing (NLP), many […]

Read More