AWS Security Blog
Tag: Machine learning
Context window overflow: Breaking the barrier
Have you ever pondered the intricate workings of generative artificial intelligence (AI) models, especially how they process and generate responses? At the heart of this fascinating process lies the context window, a critical element determining the amount of information an AI model can handle at a given time. But what happens when you exceed the […]
Generate machine learning insights for Amazon Security Lake data using Amazon SageMaker
Amazon Security Lake automatically centralizes the collection of security-related logs and events from integrated AWS and third-party services. With the increasing amount of security data available, it can be challenging knowing what data to focus on and which tools to use. You can use native AWS services such as Amazon QuickSight, Amazon OpenSearch, and Amazon […]
How to improve visibility into AWS WAF with anomaly detection
When your APIs are exposed on the internet, they naturally face unpredictable traffic. AWS WAF helps protect your application’s API against common web exploits, such as SQL injection and cross-site scripting. In this blog post, you’ll learn how to automatically detect anomalies in the AWS WAF metrics to improve your visibility into AWS WAF activity, […]
7 ways to improve security of your machine learning workflows
In this post, you will learn how to use familiar security controls to build more secure machine learning (ML) workflows. The ideal audience for this post includes data scientists who want to learn basic ways to improve security of their ML workflows, as well as security engineers who want to address threats specific to an […]