Amazon Web Services ブログ

Tag: Analytics

データ転送を簡素化: Amazon AppFlow を利用した Google BigQuery から Amazon S3 への転送

昨今のデータドリブンな世界では、様々なプラットフォーム間でデータを簡単に移動して分析できることが不可欠です。フルマネージド型のデータ統合サービスである Amazon AppFlow は AWS サービスと SaaS アプリケーション間のデータ転送を効率化する最前線に立ってきており、現在は Google BigQuery にも対応しています。このブログ記事では、Amazon AppFlowの Google BigQuery コネクタがGoogle のデータウェアハウスから Amazon Simple Storage Service (Amazon S3) にデータを転送するプロセスを簡略化する手法と、マルチクラウドデータアクセスの民主化を含めたデータ専門家や組織にとっての大きなメリットについて解説します。

AWS Glue for Apache Spark のコストのモニタリングと最適化

AWS Glue for Spark についてお客様から最もよくいただくご質問のひとつに、ワークロードのコストを効果的にモニタリングし、最適化する方法があります。AWS Glue ワークロードのコストを最適化するには、ジョブ実行をモニタリングして、実際にかかったコストと使用状況を分析し、節約できるポイントを見つけ、コードや構成の改善に向けたアクションを取ります。この投稿では、AWS Glue ワークロードの上にモニタリングと最適化技術を用いることで、コストを管理および削減するためのアプローチを紹介します。

Amazon OpenSearch Service Multi-AZ with Standby が有効化されたドメインによる高可用性の実現: フェイルオーバーの詳細

Amazon OpenSearch Service は最近、Multi-AZ with Standby を導入しました。これは重要なワークロードに対して、強化された可用性と一貫したパフォーマンスをビジネスに提供するために設計されたデプロイメントオプションです。この機能により、マネージドクラスターはゾーンのインフラストラクチャ障害に対する回復力を保ちながら、99.99% の可用性を実現できます。

Amazon OpenSearch Service は Multi-AZ with Standby を利用した 99.99% の可用性をサポート

AWS は OpenSearch Service の新しいデプロイメントオプションである Multi-AZ with Standby を発表しました。これにより、高頻度の監視、迅速な障害検出、障害からの迅速な回復などの重労働を軽減し、インフラ障害が発生した場合でもドメインの可用性とパフォーマンスを維持できるようになります。Multi-AZ with Standby を使用すると、ドメインは 99.99% の可用性と一貫したパフォーマンスを実現できます。

AWS Step Functions の Distributed Map と再実行機能を使用した効率的な ETL パイプラインの構築

AWS Step Functions は、完全マネージドのビジュアルワークフローサービスで、AWS Glue、Amazon EMR、Amazon Redshift などのさまざまな抽出・変換・読み込み (Extract, Transform, Load; ETL) テクノロジーを含む複雑なデータ処理パイプラインを構築できます。Step Functions では、失敗、中止、タイムアウトしたステートからワークフローを再実行できるようになりました。この投稿では、Step Functions のDistributed Map ステートを使用して、Amazon Relational Database Service (Amazon RDS) のテーブルからデータをエクスポートする ETL パイプラインジョブをご紹介します。その後、障害をシミュレートし、新しい失敗したステートから再実行する機能を使用して、障害が発生したタスクを障害発生地点から再起動する方法をデモンストレーションします。

クリックストリームデータによるビジネス成果の促進

今日のビジネス環境は変化が速いため、タイムリーなビジネス意思決定では、新しいデータに何時間も何日もアクセスするのではなく、リアルタイムでアクセスする必要があります。競争力を維持し、現在の市場の状況に合わせて十分な情報に基づいた意思決定を行うためには、組織はリアルタイムの情報を自由に利用できなければなりません。市場が急速に変動し、顧客の好みが変化すると、古くなったデータによって機会を逃したり、インサイトが古くなったりして、顧客体験が最適ではなくなる可能性があります。企業は、自社のデータ(ファーストパーティデータ)の所有権を取り戻し、顧客や見込み客の情報の力を活用して競争力を高め、より顧客体験をもたらすべく取り組む必要があることを認識しています。ファーストパーティデータの例としては、企業が顧客の行動や好みについての理解を深めるための大きな可能性を秘めたクリックストリームデータがあります。

統合データ基盤構成図

J.フロント リテイリングにおける統合データ基盤を活用したカスタマー・データドリブン経営の取り組み

本稿では、J.フロント リテイリング株式会社(以後、JFR)が、 AWS 上に構築した「統合データ基盤」を活用したカスタマー・データドリブン経営の取り組みについて紹介します。

Amazon Connect Contact Lens と評価機能によるエージェント品質の管理

Amazon Connect Contact Lens には、コンタクトセンターの分析機能と品質管理機能が備わっています。これにより、顧客対応の品質とエージェントのパフォーマンスを測定し、継続的な改善を通してカスタマーエクスペリエンスを向上させることができます。 会話分析を使用する事で、顧客との会話の文字起こし、顧客の感情分析などをすべて Amazon Connect 内でリアルタイムに行うことができます。このブログでは、Contact Lens の機能の1つであるエージェント評価機能によって得られるデータを分析し、その結果をAmazon QuickSight を使用して視覚化する方法を学習します。

Amazon QuickSight における新しい分析体験が2023年11月に開始

2023 年 11 月 7 日から、Amazon QuickSight に新しい分析体験が導入されます。新しい体験では、QuickSight でダッシュボードをより直感的かつ効率的に作成できるようになります。本ブログでは、この再設計の主な体験を紹介し、作成者が美しいダッシュボードやレポートを作成するためにより改良されたワークフローについて説明します。