AWS Database Blog
Category: Database
How Channel Corporation modernized their architecture with Amazon DynamoDB, Part 1: Motivation and approaches
Channel Corporation is a B2B software as a service (SaaS) startup that operates the all-in-one artificial intelligence (AI) messenger Channel Talk. This two-part blog series starts by presenting the motivation and considerations for migrating from RDBMS to NoSQL. In this post, we discuss the motivation behind Channel Corporation’s architecture modernization with Amazon DynamoDB, the reason behind choosing DynamoDB, and the four major considerations before migrating from Amazon Relational Database Service (Amazon RDS) for PostgreSQL.
Optimize Amazon Aurora PostgreSQL auto scaling performance with automated cache pre-warming
When clients start running queries on new Amazon Aurora replicas, they will notice a longer runtime for the first few times that queries are run; this is due to the cold cache of the replica. As the database runs more queries, the cache gets populated and the clients notice faster runtimes. In this post, we focus on how to address the cold cache so clients that are connecting through a load-balanced endpoint get a consistent experience regardless of whether the replicas are automatically or manually scaled. In addition, we also look at other caching solutions such as Amazon ElastiCache, a fully managed Memcached, Redis, and Valkey compatible service, that can further improve the overall experience for latency-sensitive applications and, in some situations (such as higher cache hits), lead to less frequent auto-scaling events of the Aurora read replicas.
Amazon DynamoDB data models for generative AI chatbots
Amazon DynamoDB is ideal for storing chat history and metadata due to its scalability and low latency. DynamoDB can efficiently store chat history, allowing quick access to past interactions. User-specific metadata, such as preferences and session information, can be stored to personalize responses and manage active sessions, enhancing the overall chatbot experience.In this post, we explore how to design an optimal schema for chatbots, whether you’re building a small proof of concept application or deploying a large-scale production system.
Build a scalable, context-aware chatbot with Amazon DynamoDB, Amazon Bedrock, and LangChain
Amazon DynamoDB, Amazon Bedrock, and LangChain can provide a powerful combination for building robust, context-aware chatbots. In this post, we explore how to use LangChain with DynamoDB to manage conversation history and integrate it with Amazon Bedrock to deliver intelligent, contextually aware responses. We break down the concepts behind the DynamoDB chat connector in LangChain, discuss the advantages of this approach, and guide you through the essential steps to implement it in your own chatbot.
Load vector embeddings up to 67x faster with pgvector and Amazon Aurora
pgvector is the open source PostgreSQL extension for vector similarity search that powers generative artificial intelligence (AI) applications using techniques such as semantic search and retrieval-augmented generation (RAG). Amazon Aurora PostgreSQL-Compatible Edition has supported pgvector 0.5.1 since 2023. Amazon Aurora now supports pgvector version 0.7.0, which adds parallelism to improve the performance of building Hierarchical Navigable Small Worlds […]
How Dafiti migrated its most critical database to Amazon Aurora MySQL with minimal downtime and improved operational efficiency
In the dynamic world of digital retail, performance, resilience, and availability are not only desirable qualities, they are essential. Recently, Dafiti, a leading fashion and lifestyle ecommerce conglomerate operating in Brazil, Argentina, Chile, and Colombia, undertook a significant transformation of its critical database infrastructure by migrating from self-managed MySQL Server 5.7 on Amazon EC2 to Amazon Aurora MySQL. This strategic move improved the resiliency and efficiency of its database operations. In this post, we show you why we chose Aurora MySQL-Compatible and how we migrated our critical database infrastructure.
Build a streaming ETL pipeline on Amazon RDS using Amazon MSK
Customers who host their transactional database on Amazon Relational Database Service (Amazon RDS) often seek architecture guidance on building streaming extract, transform, load (ETL) pipelines to destination targets such as Amazon Redshift. This post outlines the architecture pattern for creating a streaming data pipeline using Amazon Managed Streaming for Apache Kafka (Amazon MSK). Amazon MSK offers a fully managed Apache Kafka service, enabling you to ingest and process streaming data in real time.
Embed textual data in Amazon RDS for SQL Server using Amazon Bedrock
In Part 1 of this post, we covered how Retrieval Augmented Generation (RAG) can be used to enhance responses in generative AI applications by combining domain-specific information with a foundation model (FM). However, we stayed focused on the semantic search aspect of the solution, assuming that our vector store was already built and fully populated. In this post, we explore how to generate vector embeddings on Wikipedia data stored in a SQL Server database hosted on Amazon RDS. We also use Amazon Bedrock to invoke the appropriate FM APIs and an Amazon SageMaker Jupyter Notebook to help us orchestrate the overall process.
Modernize your legacy databases with AWS data lakes, Part 1: Migrate SQL Server using AWS DMS
This is a three-part series in which we discuss the end-to-end process of building a data lake from a legacy SQL Server database. In this post, we show you how to build data pipelines to replicate data from Microsoft SQL Server to a data lake in Amazon S3 using AWS DMS. You can extend the solution presented in this post to other database engines like PostgreSQL, MySQL, and Oracle.
Performance testing MySQL migration environments using query playback and traffic mirroring – Part 3
This is the third post in a series where we dive deep into performance testing of MySQL environments being migrated from on premises. In Part 1, we compared the query playback and traffic mirroring approaches at a high level. In Part 2, we showed how to set up and configure query playback. In this post, we show you how to set up and configure traffic mirroring.