AWS Cloud Operations Blog

Category: Amazon Bedrock

Getting insights from Amazon Managed Service for Prometheus using natural language powered by Amazon Bedrock

As applications scale, customers need more automated practices to maintain application availability and reduce the time and effort spent detecting, debugging, and resolving operational issues. Organizations allocate money and developer time to deploy and manage various monitoring tools, while also dedicating considerable effort to training teams on their usage. When issues arise, operators navigate through […]

Using Generative AI to Gain Insights into CloudWatch Logs

Have you ever been investigating a problem and opened up a log file and thought “I have no idea what I am looking at. If only I could get a summary of the data.” Observability and log data play an important role in maintaining operational excellence and ensuring the reliability of your applications and services. […]

Improve Amazon Bedrock Observability with Amazon CloudWatch AppSignals

With the pace of innovation with Generative AI applications, there is increasing demand for more granular observability into applications using Large Language Models (LLMs). Specifically, customers want visibility into: Prompt metrics like token usage, costs, and model IDs for individual transactions and operations, apart from service-level aggregations. Output quality factors including potential toxicity, harm, truncation […]

Alarm Context Tool Architecture Diagram

Respond to CloudWatch Alarms with Amazon Bedrock Insights

Overview When operating complex, distributed systems in the cloud, quickly identifying the root cause of issues and resolving incidents can be a daunting task. Troubleshooting often involves sifting through metrics, logs, and traces from multiple AWS services, making it challenging to gain a comprehensive understanding of the problem. So how can you streamline this process […]

Planning Migrations to successfully incorporate Generative AI

The recent rise of generative artificial intelligence (generative AI) solutions presents challenges to migrations that are in flight and to migrations that are just beginning. The business problem is that generative AI complicates cloud migrations by introducing additional risks related to data isolation, data sharing, and service costs. For example, the US Space Force has […]

Modernizing Account Management with Amazon Bedrock and AWS Control Tower

Introduction The integration of Generative AI into cloud governance transforms AWS account management into a more automated and efficient process. Leveraging the generative AI capabilities of Amazon Bedrock alongside tools such as AWS Control Tower and Account Factory for Terraform (AFT), organizations can now expedite the AWS account setup and management process, aligning with best […]

Automate the creation of AWS Support cases using Amazon CloudWatch alarms and Amazon Bedrock

Automate the creation of AWS Support cases using Amazon CloudWatch alarms and Amazon Bedrock

For production applications, the Mean-Time-To-Recovery (MTTR) is critical. In line with this, AWS offers Business, Enterprise On-Ramp and Enterprise support plans where AWS customers can benefit from shorter response time for cases related to production and business critical workloads. However, without having an automated way to notify AWS support, creating a case is a manual […]

Monitoring Generative AI applications using Amazon Bedrock and Amazon CloudWatch integration

Amazon Bedrock is an easy way to build and scale generative AI applications with foundation models (FMs). As a fully managed service, it offers a choice of high-performing FMs from leading AI companies including AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon. It also offers a broad set of capabilities needed to build generative […]