AWS Security Blog

Scale your authorization needs for Secrets Manager using ABAC with IAM Identity Center

With AWS Secrets Manager, you can securely store, manage, retrieve, and rotate the secrets required for your applications and services running on AWS. A secret can be a password, API key, OAuth token, or other type of credential used for authentication purposes. You can control access to secrets in Secrets Manager by using AWS Identity and Access Management (IAM) permission policies. In this blog post, I will show you how to use principles of attribute-based access control (ABAC) to define dynamic IAM permission policies in AWS IAM Identity Center (successor to AWS Single Sign-On) by using user attributes from an external identity provider (IdP) and resource tags in Secrets Manager.

What is ABAC and why use it?

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on attributes or characteristics of the user, the data, or the environment, such as the department, business unit, or other factors that could affect the authorization outcome. In the AWS Cloud, these attributes are called tags. By assigning user attributes as principal tags, you can simplify the process of creating fine-grained permissions on AWS.

With ABAC, you can use attributes to build more dynamic policies that provide access based on matching attribute conditions. ABAC rules are evaluated dynamically at runtime, which means that the users’ access to applications and data and the type of allowed operations automatically change based on the contextual factors in the policy. For example, if a user changes department, access is automatically adjusted without the need to update permissions or request new roles. You can use ABAC in conjunction with role-based access control (RBAC) to combine the ease of policy administration with flexible policy specification and dynamic decision-making capability to enforce least privilege.

AWS IAM Identity Center (successor to AWS Single Sign-On) expands the capabilities of IAM to provide a central place that brings together the administration of users and their access to AWS accounts and cloud applications. With IAM Identity Center, you can define user permissions and manage access to accounts and applications in your AWS Organizations organization centrally. You can also create ABAC permission policies in a central place. ABAC will work with attributes from a supported identity source in IAM Identity Center. For a list of supported external IdPs for identity synchronization through the System for Cross-domain Identity Management (SCIM) and Security Assertion Markup Language (SAML) 2.0, see Supported identity providers.

The following are key benefits of using ABAC with IAM Identity Center and Secrets Manager:

  1. Fewer permission sets — With ABAC, multiple users who use the same IAM Identity Center permission set and the same IAM role can still get unique permissions, because permissions are now based on user attributes. Administrators can author IAM policies that grant users access only to secrets that have matching attributes. This helps reduce the number of distinct permissions that you need to create and manage in IAM Identity Center and, in turn, reduces your permission management complexity.
  2. Teams can change and grow quickly — When you create new secrets, you can apply the appropriate tags, which will automatically grant access without requiring you to update the permission policies.
  3. Use employee attributes from your corporate directory to define access — You can use existing employee attributes from a supported identity source configured in IAM Identity Center to make access control decisions on AWS.

Figure 1 shows a framework to control access to Secrets Manager secrets using IAM Identity Center and ABAC principles.

Figure 1: ABAC framework to control access to secrets using IAM Identity Center

Figure 1: ABAC framework to control access to secrets using IAM Identity Center

The following is a brief introduction to the basic components of the framework:

  1. User attribute source or identity source — This is where your users and groups are administered. You can configure a supported identity source with IAM Identity Center. You can then define and manage supported user attributes in the identity source.
  2. Policy management — You can create and maintain policy definitions (permission sets) centrally in IAM Identity Center. You can assign access to a user or group to one or more accounts in IAM Identity Center with these permission sets. You can then use attributes defined in your identity source to build ABAC policies for managing access to secrets.
  3. Policy evaluation — When you assign a permission set, IAM Identity Center creates corresponding IAM Identity Center-controlled IAM roles in each account, and attaches the policies specified in the permission set to those roles. IAM Identity Center manages the role, and allows the authorized users that you’ve defined to assume the role. When users try to access a secret, IAM dynamically evaluates ABAC policies on the target account to determine access based on the attributes assigned to the user and resource tags assigned to that secret.

How to configure ABAC with IAM Identity Center

To configure ABAC with IAM Identity Center, you need to complete the following high-level steps. I will walk you through these steps in detail later in this post.

  1. Identify and set up identities that are created and managed in the identity source with user attributes, such as project, team, AppID or department.
  2. In IAM Identity Center, enable Attributes for access control and configure select attributes (such as department) to use for access control. For a list of supported attributes, see Supported external identity provider attributes.
  3. If you are using an external IdP and choose to use custom attributes from your IdP for access controls, configure your IdP to send the attributes through SAML assertions to IAM Identity Center.
  4. Assign appropriate tags to secrets in Secrets Manager.
  5. Create permission sets based on attributes added to identities and resource tags.
  6. Define guardrails to enforce access using ABAC.

ABAC enforcement and governance

Because an ABAC authorization model is based on tags, you must have a tagging strategy for your resources. To help prevent unintended access, you need to make sure that tagging is enforced and that a governance model is in place to protect the tags from unauthorized updates. By using service control policies (SCPs) and AWS Organizations tag policies, you can enforce tagging and tag governance on resources.

When you implement ABAC for your secrets, consider the following guidance for establishing a tagging strategy:

  • During secret creation, secrets must have an ABAC tag applied (tag-on-create).
  • During secret creation, the provided ABAC tag key must be the same case as the principal’s ABAC tag key.
  • After secret creation, the ABAC tag cannot be modified or deleted.
  • Only authorized principals can do tagging operations on secrets.
  • You enforce the permissions that give access to secrets through tags.

For more information on tag strategy, enforcement, and governance, see the following resources:

Solution overview

In this post, I will walk you through the steps to enable the IdP that is supported by IAM Identity Center.

Figure 2: Sample solution implementation

Figure 2: Sample solution implementation

In the sample architecture shown in Figure 2, Arnav and Ana are users who each have the attributes department and AppID. These attributes are created and updated in the external directory—Okta in this case. The attribute department is automatically synchronized between IAM Identity Center and Okta using SCIM. The attribute AppID is a custom attribute configured on Okta, and is passed to AWS as a SAML assertion. Both users are configured to use the same IAM Identity Center permission set that allows them to retrieve the value of secrets stored in Secrets Manager. However, access is granted based on the tags associated with the secret and the attributes assigned to the user. 

For example, user Arnav can only retrieve the value of the RDS_Master_Secret_AppAlpha secret. Although both users work in the same department, Arnav can’t retrieve the value of the RDS_Master_Secret_AppBeta secret in this sample architecture.

Prerequisites

Before you implement the solution in this blog post, make sure that you have the following prerequisites in place:

  1. You have IAM Identity Center enabled for your organization and connected to an external IdP using SAML 2.0 identity federation.
  2. You have IAM Identity Center configured for automatic provisioning with an external IdP using the SCIM v2.0 standard. SCIM keeps your IAM Identity Center identities in sync with identities from the external IdP.

Solution implementation

In this section, you will learn how to enable access to Secrets Manager using ABAC by completing the following steps:

  1. Configure ABAC in IAM Identity Center
  2. Define custom attributes in Okta
  3. Update configuration for the IAM Identity Center application on Okta
  4. Make sure that required tags are assigned to secrets in Secrets Manager
  5. Create and assign a permission set with an ABAC policy in IAM Identity Center
  6. Define guardrails to enforce access using ABAC

Step 1: Configure ABAC in IAM Identity Center

The first step is to set up attributes for your ABAC configuration in IAM Identity Center. This is where you will be mapping the attribute coming from your identity source to an attribute that IAM Identity Center passes as a session tag. The Key represents the name that you are giving to the attribute for use in the permission set policies. You need to specify the exact name in the policies that you author for access control. For the example in this post, you will create a new attribute with Key of department and Value of ${path:enterprise.department}. For supported external IdP attributes, see Attribute mappings.

To configure ABAC in IAM Identity Center (console)

  1. Open the IAM Identity Center console.
  2. In the Settings menu, enable Attributes for access control.
  3. Choose the Attributes for access control tab, select Add attribute, and then enter the Key and Value details as follows.
    • Key: department
    • Value: ${path:enterprise.department}

Note: For more information, see Attributes for access control.

Step 2: Define custom attributes in Okta

The sample architecture in this post uses a custom attribute (AppID) on an external IdP for access control. In this step, you will create a custom attribute in Okta.

To define custom attributes in Okta (console)

  1. Open the Okta console.
  2. Navigate to Directory and then select Profile Editor.
  3. On the Profile Editor page, choose Okta User (default).
  4. Select Add Attribute and create a new custom attribute with the following parameters.
    • For Data type, enter string
    • For Display name, enter AppID
    • For Variable name, enter AppID
    • For Attribute length, select Less Than from the dropdown and enter a value.
    • For User permission, enter Read Only
  5. Navigate to Directory, select People, choose in-scope users, and enter a value for Department and AppID attributes. The following shows these values for the users in our example.
    • First name (firstName): Arnav
    • Last name (lastName): Desai
    • Primary email (email): arnav.desai@example.net
    • Department (department): Digital
    • AppID: Alpha
       
    • First name (firstName): Ana
    • Last name (lastName): Carolina
    • Primary email (email): ana.carolina@example.net
    • Department (department): Digital
    • AppID: Beta

Step 3: Update SAML configuration for IAM Identity Center application on Okta

Automatic provisioning (through the SCIM v2.0 standard) of user and group information from Okta into IAM Identity Center supports a set of defined attributes. A custom attribute that you create on Okta won’t be automatically synchronized to IAM Identity Center through SCIM. You can, however, define the attribute in the SAML configuration so that it is inserted into the SAML assertions.

To update the SAML configuration in Okta (console)

  1. Open the Okta console and navigate to Applications.
  2. On the Applications page, select the app that you defined for IAM Identity Center.
  3. Under the Sign On tab, choose Edit.
  4. Under SAML 2.0, expand the Attributes (Optional) section, and add an attribute statement with the following values, as shown in Figure 3:
    Figure 3: Sample SAML configuration with custom attributes

    Figure 3: Sample SAML configuration with custom attributes

  5. To check that the newly added attribute is reflected in the SAML assertion, choose Preview SAML, review the information, and then choose Save.

Step 4: Make sure that required tags are assigned to secrets in Secrets Manager

The next step is to make sure that the required tags are assigned to secrets in Secrets Manager. You will review the required tags from the Secrets Manager console.

To verify required tags on secrets (console)

  1. Open the Secrets Manager console in the target AWS account and then choose Secrets.
  2. Verify that the required tags are assigned to the secrets in scope for this solution, as shown in Figure 4. In our example, the tags are as follows:
    • Keydepartment
    • Value: Digital
    • KeyAppID
    • Value: Alpha or Beta
    Figure 4: Sample secret configuration with required tags

    Figure 4: Sample secret configuration with required tags

Step 5a: Create a permission set in IAM Identity Center using ABAC policy

In this step, you will create a new permission set that allows access to secrets based on the principal attributes and resource tags.

When you enable ABAC and specify attributes, IAM Identity Center passes the attribute value of the authenticated user to AWS Security Token Service (AWS STS) as session tags when an IAM role is assumed. You can use access control attributes in your permission sets by using the aws:PrincipalTag condition key to create access control rules.

To create a permission set (console)

  1. Open the IAM Identity Center console and navigate to Multi-account permissions.
  2. Choose Permission sets, and then select Create permission set.
  3. On the Specify policies and permissions boundary page, choose Inline policy.
  4. For Inline policy, paste the following sample policy document and then choose Next. This policy allows users to retrieve the value of only those secrets that have resource tags that match the required user attributes (department and AppID in our example).
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Sid": "ListAllSecrets",
                "Effect": "Allow",
                "Action": [
                    "secretsmanager:ListSecrets"
                ],
                "Resource": "*"
            },
            {
                "Sid": "AuthorizetoGetSecretValue",
                "Effect": "Allow",
                "Action": [
                    "secretsmanager:GetSecretValue",
                    "secretsmanager:DescribeSecret"
                ],
                "Resource": "*",
                "Condition": {
                    "StringEquals": {
                        "secretsmanager:ResourceTag/department": "${aws:PrincipalTag/department}",
                        "secretsmanager:ResourceTag/AppID": "${aws:PrincipalTag/AppID}"
                    }
                }
            }
        ]
    }
  5. Configure the session duration, and optionally provide a description and tags for the permission set.
  6. Review and create the permission set.

Step 5b: Assign permission set to users in IAM Identity Center

Now that you have created a permission set with ABAC policy, complete the configuration by assigning the permission set to users to grant them access to secrets in one or more accounts in your organization.

To assign a permission set (console)

  1. Open the IAM Identity Center console and navigate to Multi-account permissions.
  2. Choose AWS accounts and select one or more accounts to which you want to assign access.
  3. Choose Assign users or groups.
  4. On the Assign users and groups page, select the users, groups, or both to which you want to assign access. For this example, I select both Arnav and Ana.
  5. On the Assign permission sets page, select the permission set that you created in the previous section.
  6. Review your changes, as shown in Figure 5, and then select Submit.
Figure 5: Sample permission set assignment

Figure 5: Sample permission set assignment

Step 6: Define guardrails to enforce access using ABAC

To govern access to secrets to your workforce users only through ABAC and to help prevent unauthorized access, you can define guardrails. In this section, I will show you some sample service control policies (SCPs) that you can use in your organization.

Note: Before you use these sample SCPs, you should carefully review, customize, and test them for your unique requirements. For additional instructions on how to attach an SCP, see Attaching and detaching service control policies.

Guardrail 1 – Enforce ABAC to access secrets

The following sample SCP requires the use of ABAC to access secrets in Secrets Manager. In this example, users and secrets must have matching values for the attributes department and AppID. Access is denied if those attributes don’t exist or if they don’t have matching values. Also, this example SCP allows only the admin role to access secrets without matching tags. Replace <arn:aws:iam::*:role/secrets-manager-admin-role> with your own information.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "DenyAccesstoSecretsWithoutABACTag",
            "Effect": "Deny",
            "Action": [
                "secretsmanager:GetSecretValue",
                "secretsmanager:DescribeSecret"
            ],
            "Resource": "*",
            "Condition": {
                "StringNotEqualsIfExists": {
                    "secretsmanager:ResourceTag/department": "${aws:PrincipalTag/department}",
                    "secretsmanager:ResourceTag/AppID": "${aws:PrincipalTag/AppID}"
                },
                "ArnNotLike": {
                    "aws:PrincipalArn": "<arn:aws:iam::*:role/secrets-manager-admin-role>"
                }
            }
        }
    ]
}

Guardrail 2 – Enforce tagging on secret creation

The following sample SCP denies the creation of new secrets that don’t have the required tag key-value pairs. In this example, the SCP denies creation of a new secret if it doesn’t include department and AppID tag keys. It also denies access if the tag department doesn’t have the value Digital and the tag AppID doesn’t have either Alpha or Beta assigned to it. Also, this example SCP allows only the admin role to create secrets without matching tags. Replace <arn:aws:iam::*:role/secrets-manager-admin-role> with your own information.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "DenyCreatingResourcesWithoutRequiredTag",
      "Effect": "Deny",
      "Action": [
        "secretsmanager:CreateSecret"
      ],
      "Resource": [
        "arn:aws:secretsmanager:*:*:secret:*"
      ],
      "Condition": {
        "StringNotEquals": {
          "aws:RequestTag/department": ["Digital"],
          "aws:RequestTag/AppID": ["Alpha", "Beta"]
        },
        "ArnNotLike": {
          "aws:PrincipalArn": "<arn:aws:iam::*:role/secrets-manager-admin-role>"
        }
      }
    }
  ]
}

Guardrail 3 – Restrict deletion of ABAC tags

The following sample SCP denies the ability to delete the tags used for ABAC. In this example, only the admin role can delete the tags department and AppID after they are attached to a secret. Replace <arn:aws:iam::*:role/secrets-manager-admin-role> with your own information.

Guardrail 4 – Restrict modification of ABAC tags

The following sample SCP denies the ability to modify required tags for ABAC after they are attached to a secret. In this example, only the admin role can modify the tags department and AppID after they are attached to a secret. Replace <arn:aws:iam::*:role/secrets-manager-admin-role> with your own information.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "DenyModifyingABACTags",
      "Effect": "Deny",
      "Action": [
        "secretsmanager:TagResource"
      ],
      "Resource": [
        "arn:aws:secretsmanager:*:*:secret:*"
      ],
      "Condition": {
        "Null": {
          "aws:ResourceTag/department": "false",
          "aws:ResourceTag/AppID": "false"
        },
        "ArnNotLike": {
          "aws:PrincipalArn": "<arn:aws:iam::*:role/secrets-manager-admin-role>"
        }
      }
    }
  ]
}

Test the solution 

In this section, you will test the solution by retrieving a secret using the Secrets Manager console. Your attempt to retrieve the secret value will be successful only when the required resource and principal tags exist, and have matching values (AppID and department in our example).

Test scenario 1: Retrieve and view the value of an authorized secret

In this test, you will verify whether you can successfully retrieve the value of a secret that belongs to your application.

To test the scenario

  1. Sign in to IAM Identity Center and log in with your external IdP user. For this example, I log in as Arnav.
  2. On the IAM Identity Center dashboard, select the target account.
  3. From the list of available roles that the user has access to, choose the role that you created in Step 5a and select Management console, as shown in Figure 6. For this example, I select the SecretsManagerABACTest permission set.
    Figure 6: Sample IAM Identity Center dashboard

    Figure 6: Sample IAM Identity Center dashboard

  4. Open the Secrets Manager console and select a secret that belongs to your application. For this example, I select RDS_Master_Secret_AppAlpha.

    Because the AppID and department tags exist on both the secret and the user, the ABAC policy allowed the user to describe the secret, as shown in Figure 7.

    Figure 7: Sample secret that was described successfully

    Figure 7: Sample secret that was described successfully

  5. In the Secret value section, select Retrieve secret value.

    Because the value of the resource tags, AppID and department, matches the value of the corresponding user attributes (in other words, the principal tags), the ABAC policy allows the user to retrieve the secret value, as shown in Figure 8.

    Figure 8: Sample secret value that was retrieved successfully

    Figure 8: Sample secret value that was retrieved successfully

Test scenario 2: Retrieve and view the value of an unauthorized secret

In this test, you will verify whether you can retrieve the value of a secret that belongs to a different application.

To test the scenario

  1. Repeat steps 1-3 from test scenario 1.
  2. Open the Secrets Manager console and select a secret that belongs to a different application. For this example, I select RDS_Master_Secret_AppBeta.

    Because the value of the resource tag AppID doesn’t match the value of the corresponding user attribute (principal tag), the ABAC policy denies access to describe the secret, as shown in Figure 9.

    Figure 9: Sample error when describing an unauthorized secret

    Figure 9: Sample error when describing an unauthorized secret

Conclusion

In this post, you learned how to implement an ABAC strategy using attributes and to build dynamic policies that can simplify access management to Secrets Manager using IAM Identity Center configured with an external IdP. You also learned how to govern resource tags used for ABAC and establish guardrails to enforce access to secrets using ABAC. To learn more about ABAC and Secrets Manager, see Attribute-Based Access Control (ABAC) for AWS and the Secrets Manager documentation.

If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on AWS Secrets Manager re:Post.

 
Want more AWS Security news? Follow us on Twitter.

Aravind Gopaluni

Aravind Gopaluni

Aravind is a Senior Security Solutions Architect at AWS helping Financial Services customers meet their security and compliance objectives in the AWS cloud. Aravind has about 20 years of experience focusing on identity & access management and data protection solutions to numerous global enterprises. Outside of work, Aravind loves to have a ball with his family and explore new cuisines.