Artificial Intelligence

Category: Amazon SageMaker

Image augmentation pipeline for Amazon Lookout for Vision

Amazon Lookout for Vision provides a machine learning (ML)-based anomaly detection service to identify normal images (i.e., images of objects without defects) vs anomalous images (i.e., images of objects with defects), types of anomalies (e.g., missing piece), and the location of these anomalies. Therefore, Lookout for Vision is popular among customers that look for automated […]

Amazon SageMaker JumpStart now offers Amazon Comprehend notebooks for custom classification and custom entity detection

Amazon Comprehend is a natural language processing (NLP) service that uses machine learning (ML) to discover insights from text. Amazon Comprehend provides customized features, custom entity recognition, custom classification, and pre-trained APIs such as key phrase extraction, sentiment analysis, entity recognition, and more so you can easily integrate NLP into your applications. We recently added […]

Prepare data from Amazon EMR for machine learning using Amazon SageMaker Data Wrangler

Data preparation is a principal component of machine learning (ML) pipelines. In fact, it is estimated that data professionals spend about 80 percent of their time on data preparation. In this intensive competitive market, teams want to analyze data and extract more meaningful insights quickly. Customers are adopting more efficient and visual ways to build […]

Damage assessment using Amazon SageMaker geospatial capabilities and custom SageMaker models

In this post, we show how to train, deploy, and predict natural disaster damage with Amazon SageMaker with geospatial capabilities. We use the new SageMaker geospatial capabilities to generate new inference data to test the model. Many government and humanitarian organizations need quick and accurate situational awareness when a disaster strikes. Knowing the severity, cause, […]

Deploy Amazon SageMaker Autopilot models to serverless inference endpoints

Amazon SageMaker Autopilot automatically builds, trains, and tunes the best machine learning (ML) models based on your data, while allowing you to maintain full control and visibility. Autopilot can also deploy trained models to real-time inference endpoints automatically. If you have workloads with spiky or unpredictable traffic patterns that can tolerate cold starts, then deploying […]

Use your own training scripts and automatically select the best model using hyperparameter optimization in Amazon SageMaker

The success of any machine learning (ML) pipeline depends not just on the quality of model used, but also the ability to train and iterate upon this model. One of the key ways to improve an ML model is by choosing better tunable parameters, known as hyperparameters. This is known as hyperparameter optimization (HPO). However, […]

Illustrative notebooks in Amazon SageMaker JumpStart

Amazon SageMaker JumpStart is the Machine Learning (ML) hub of SageMaker providing pre-trained, publicly available models for a wide range of problem types to help you get started with machine learning. JumpStart also offers example notebooks that use Amazon SageMaker features like spot instance training and experiments over a large variety of model types and […]

Interactive data prep widget for notebooks powered by Amazon SageMaker Data Wrangler

According to a 2020 survey of data scientists conducted by Anaconda, data preparation is one of the critical steps in machine learning (ML) and data analytics workflows, and often very time consuming for data scientists. Data scientists spend about 66% of their time on data preparation and analysis tasks, including loading (19%), cleaning (26%), and […]

Run notebooks as batch jobs in Amazon SageMaker Studio Lab

Recently, the Amazon SageMaker Studio launched an easy way to run notebooks as batch jobs that can run on a recurring schedule. Amazon SageMaker Studio Lab also supports this feature, enabling you to run notebooks that you develop in SageMaker Studio Lab in your AWS account. This enables you to quickly scale your machine learning […]

Organize machine learning development using shared spaces in SageMaker Studio for real-time collaboration

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models. Within an Amazon SageMaker Domain, users can provision a personal Amazon SageMaker Studio IDE application, which […]