AWS Machine Learning Blog

Category: Amazon SageMaker JumpStart

Run automatic model tuning with Amazon SageMaker JumpStart

In December 2020, AWS announced the general availability of Amazon SageMaker JumpStart, a capability of Amazon SageMaker that helps you quickly and easily get started with machine learning (ML). In March 2022, we also announced the support for APIs in JumpStart. JumpStart provides one-click fine-tuning and deployment of a wide variety of pre-trained models across […]

Image classification and object detection using Amazon Rekognition Custom Labels and Amazon SageMaker JumpStart

In the last decade, computer vision use cases have been a growing trend, especially in industries like insurance, automotive, ecommerce, energy, retail, manufacturing, and others. Customers are building computer vision machine learning (ML) models to bring operational efficiencies and automation to their processes. Such models help automate the classification of images or detection of objects […]

Build a corporate credit ratings classifier using graph machine learning in Amazon SageMaker JumpStart

Today, we’re releasing a new solution for financial graph machine learning (ML) in Amazon SageMaker JumpStart. JumpStart helps you quickly get started with ML and provides a set of solutions for the most common use cases that can be trained and deployed with just a few clicks. The new JumpStart solution (Graph-Based Credit Scoring) demonstrates […]

Amazon SageMaker JumpStart models and algorithms now available via API

July 2023: This post was reviewed for accuracy. In December 2020, AWS announced the general availability of Amazon SageMaker JumpStart, a capability of Amazon SageMaker that helps you quickly and easily get started with machine learning (ML). JumpStart provides one-click fine-tuning and deployment of a wide variety of pre-trained models across popular ML tasks, as […]

Enable Amazon SageMaker JumpStart for custom IAM execution roles

With an Amazon SageMaker Domain, you can onboard users with an AWS Identity and Access Management (IAM) execution role different than the Domain execution role. In such case, the onboarded Domain user can’t create projects using templates and Amazon SageMaker JumpStart solutions. This post outlines an automated approach to enable JumpStart for Domain users with […]

Build custom Amazon SageMaker PyTorch models for real-time handwriting text recognition

In many industries, including financial services, banking, healthcare, legal, and real estate, automating document handling is an essential part of the business and customer service. In addition, strict compliance regulations make it necessary for businesses to handle sensitive documents, especially customer data, properly. Documents can come in a variety of formats, including digital forms or […]

Get started with RStudio on Amazon SageMaker

Today, we’re excited to announce RStudio on Amazon SageMaker, the industry’s first fully-managed RStudio integrated development environment (IDE) in the cloud. You can now bring the current RStudio licenses and migrate your self-managed RStudio environments to Amazon SageMaker in a few simple steps. RStudio is one of the most popular IDEs among R developers for […]

Automated claims processing at Xactware with machine learning on AWS

This blog post was co-authored, and includes an introduction, by Aaron Brunko, Senior Vice President, Claims Product at Xactware. Property insurance claims involving the valuation and replacement of personal belongings can be a painful process for everyone involved after a loss. From catastrophic events such as hurricanes, tornados, and wildfires, to theft and vandalism, claim […]

Enhance your machine learning development by using a modular architecture with Amazon SageMaker projects

One of the main challenges in a machine learning (ML) project implementation is the variety and high number of development artifacts and tools used. This includes code in notebooks, modules for data processing and transformation, environment configuration, inference pipeline, and orchestration code. In production workloads, the ML model created within your development framework is almost […]

Onboard OneLogin SSO users to Amazon SageMaker Studio

Amazon SageMaker is a fully managed service that provides every machine learning (ML) developer and data scientist the ability to build, train, and deploy ML models at scale. Amazon SageMaker Studio is a web-based, integrated development environment (IDE) for ML. Amazon SageMaker Studio provides all the tools you need to take your models from experimentation […]