Artificial Intelligence
Category: Advanced (300)
Use Amazon DocumentDB to build no-code machine learning solutions in Amazon SageMaker Canvas
We are excited to announce the launch of Amazon DocumentDB (with MongoDB compatibility) integration with Amazon SageMaker Canvas, allowing Amazon DocumentDB customers to build and use generative AI and machine learning (ML) solutions without writing code. Amazon DocumentDB is a fully managed native JSON document database that makes it straightforward and cost-effective to operate critical […]
Boost productivity on Amazon SageMaker Studio: Introducing JupyterLab Spaces and generative AI tools
Amazon SageMaker Studio offers a broad set of fully managed integrated development environments (IDEs) for machine learning (ML) development, including JupyterLab, Code Editor based on Code-OSS (Visual Studio Code Open Source), and RStudio. It provides access to the most comprehensive set of tools for each step of ML development, from preparing data to building, training, […]
Improve your Stable Diffusion prompts with Retrieval Augmented Generation
Text-to-image generation is a rapidly growing field of artificial intelligence with applications in a variety of areas, such as media and entertainment, gaming, ecommerce product visualization, advertising and marketing, architectural design and visualization, artistic creations, and medical imaging. Stable Diffusion is a text-to-image model that empowers you to create high-quality images within seconds. In November […]
Build an end-to-end MLOps pipeline using Amazon SageMaker Pipelines, GitHub, and GitHub Actions
Machine learning (ML) models do not operate in isolation. To deliver value, they must integrate into existing production systems and infrastructure, which necessitates considering the entire ML lifecycle during design and development. ML operations, known as MLOps, focus on streamlining, automating, and monitoring ML models throughout their lifecycle. Building a robust MLOps pipeline demands cross-functional […]
Create a web UI to interact with LLMs using Amazon SageMaker JumpStart
The launch of ChatGPT and rise in popularity of generative AI have captured the imagination of customers who are curious about how they can use this technology to create new products and services on AWS, such as enterprise chatbots, which are more conversational. This post shows you how you can create a web UI, which […]
Mitigate hallucinations through Retrieval Augmented Generation using Pinecone vector database & Llama-2 from Amazon SageMaker JumpStart
Despite the seemingly unstoppable adoption of LLMs across industries, they are one component of a broader technology ecosystem that is powering the new AI wave. Many conversational AI use cases require LLMs like Llama 2, Flan T5, and Bloom to respond to user queries. These models rely on parametric knowledge to answer questions. The model […]
How Q4 Inc. used Amazon Bedrock, RAG, and SQLDatabaseChain to address numerical and structured dataset challenges building their Q&A chatbot
This post is co-written with Stanislav Yeshchenko from Q4 Inc. Enterprises turn to Retrieval Augmented Generation (RAG) as a mainstream approach to building Q&A chatbots. We continue to see emerging challenges stemming from the nature of the assortment of datasets available. These datasets are often a mix of numerical and text data, at times structured, […]
Use custom metadata created by Amazon Comprehend to intelligently process insurance claims using Amazon Kendra
Structured data, defined as data following a fixed pattern such as information stored in columns within databases, and unstructured data, which lacks a specific form or pattern like text, images, or social media posts, both continue to grow as they are produced and consumed by various organizations. For instance, according to International Data Corporation (IDC), […]
Amazon SageMaker simplifies setting up SageMaker domain for enterprises to onboard their users to SageMaker
As organizations scale the adoption of machine learning (ML), they are looking for efficient and reliable ways to deploy new infrastructure and onboard teams to ML environments. One of the challenges is setting up authentication and fine-grained permissions for users based on their roles and activities. For example, MLOps engineers typically perform model deployment activities, […]
Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 2: Interactive User Experiences in SageMaker Studio
Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at scale. SageMaker makes it easy to deploy models into production directly through API calls to the service. Models are packaged into containers for robust and scalable deployments. SageMaker provides […]









