Amazon Web Services ブログ

Category: Internet of Things

AWS IoT Device Managementのフリートインデックスを使っての大量のモノの状態を識別する

本ブログにおいて、新しいAWS IoT Device ManagementのFleet indexingの新しい機能を紹介します。これの記事の内容ではAWS LambdaおよびAmazon CloudWatchを組み合わせてフリートの監視を自動化できます。 IoTデバイスを管理する場合、フリートの状態を監視するのは難しい場合があります。 複雑さは多くの要因によるものです:デバイスの数、監視する動的状態の数、およびフリート状態変更のための通知メカニズムの数。 AWS IoT Device Managementは、リモートで接続されたデバイスを大規模にオンボード化、整理、監視、管理することを可能にするサービスです。   AWS IoT Device Management内では、フリートインデックスを使用すると、フリート内のすべてのデバイスのレジストリ、デバイスシャドウ、および接続状態をインデックス化し、これらの属性の任意の組み合わせに基づいてデバイスを検索できます。 フリートインデックスを使用して、どのデバイスが特定のバージョンのファームウェアを実行しているかを照会したり、どのデバイスがAWS IoTサービスに接続されているかを照会したりできます。 このブログ記事は4つのステップにわけて解説します。 フリートインデックスを有効にします。 Lambda関数のAWS Identity and Access Management(IAM)ロールとアクセス許可を定義します。 Lambda関数を定義して構成します。 フリート管理ダッシュボードを構築し、CloudWatchを使用してアラームを設定します。 本ブログではAWSマネージメントコンソールで作業していきます。この作業はAWS Command Line Interface(AWS CLI)でも実行できます。

Read More

IoT atlasのご紹介(デザインパターン)

AWS IoTが利用可能になった2015年から、センサーネットワークやコントロールシステムアーキテクチャやマシンツーマシン(M2M)ネットワークの、成熟した長年あるドメインへクラウド開発の概念を含めように修正する必要がでています。 IoT Atlasは、使いやすく検索可能なWebサイト(https://iotatlas.net)で入手できるIoTデザインパターンです。 IoT AtlasはクラウドでIoTソリューションを構築している人が利用できるように想定し、デザインの更新や拡張を行います。 IoT Atlasは、新規および長期にわたるソリューションビルダーのためのリソースです。 デザインはクラウドサービスにとらわれないため、IoT AtlasはGitHubのリポジトリとして公開されています。 Creative Commonsライセンスの下でコンテンツを公開することで、デザインのアイデア、考慮事項、および例の顧客、フィールド、およびパートナーの貢献を促進します。 また、ソリューションにおける新しいIoTパターンについての会話と理解を促進したいと考えています。 現時点で IoT Atlasは以下のデザインが利用可能です。 コマンド:要求元のエンティティは、ステータスの確認応答とともに、デバイスに単一のアクションを実行するように要求する。 デバイスブートストラップ:未登録のデバイスが登録され、IoTソリューションとして機能するようになる。 デバイスステータスレプリカ:物理デバイスから報告された状態または望ましい将来の状態の論理表現。 ゲートウェイ:デバイスは、ローカルデバイスとデバイスおよびクラウドの間の仲介役として機能。 ソフトウェアアップデート:デバイスは新しいソフトウェアを入手し、アップデートを実行、完了の確認をする。 テレメトリ:遠隔環境のセンサーからデータを収集し、その測定値を他のコンポーネントで使用できるようにする。 テレメトリアーカイブ:デバイスの測定値が保存され、元の形式または処理された形式で使用できるようにする。 たとえば、従来のテレメトリソリューションでは、オンプレミスデバイスからセンサーデータを取得し、そのデータをFTP、HTTP、またはその他のメカニズムを使用して自分で運用しているサーバーに送信することができます。 IoT Atlasのテレメトリ設計では、マネージドなクラウドベースのIoTメッセージングプロトコルとプロトコルエンドポイントを使用しています。 このため、オリジナルのテレメトリ設計は、グローバルなハイパースケールクラウドを含む改訂の恩恵を受けます。 これはIoTデザインの初公開となるために、IoT Atlasを成長するリソースにするためのあなたの助けを待っています。 IoTの設計、考慮事項、および例についてのアイデアやコンテンツを読んで、レビューし、コメントする時間を少しいただけませんか?コントリビュートの方法はこちらをご参照ください。 私たちは一緒にIoTソリューションの成功に向かって業界を導くマップを作成することができます。 原文はこちら 翻訳はSA 小梁川が担当しました

Read More

AWS IoT ボタンによる、ジャストインタイムの VPN アクセス

AWS コミュニティヒーローである Teri Radichel による寄稿。Teri Radichel は、彼女の会社である 2nd Sight Lab を通じてサイバーセキュリティ評価、ペネトレーションテスト、調査サービスを提供しています。また、彼女は AWS Architects Seattle Meetup の創設者でもあります。 クラウドセキュリティのトレーニングを行うために旅行している間、私はホテルの部屋でも、教室でも VPN を使用して Wi-Fi ネットワークに接続します。ほとんどの企業は、リモート VPN エンドポイントをインターネット全体に公開しています。そこで、必要な場所にだけネットワークアクセスを許可するために AWS IoT ボタンを使用できるという仮説を思いつきました。VPN ユーザーがクリックするとアクセスできるようになり、ネットワークルールが起動され、ダブルクリックすると再びネットワークトラフィックが許可されなくなるとしたらどうでしょうか。 このアイディアを試したところ、以下の結果が分かります。 なぜ、VPN をリモートクラウド管理に使用するのか、疑問に思われるかもしれません。なぜ、ノートパソコンやモバイルアプリケーションではなくて AWS IoT ボタンなのでしょうか? それについての詳細は、私のクラウドセキュリティに関するブログをご覧ください。 最初は、デバイスで使用される証明書を組織が管理できるので、AWS IoT エンタープライズボタンを使用したいと考えていました。また Wi-Fi も使用し、ネットワークアクセスを許可するためにボタンの IP アドレスを取得することを望んでいました。そのためには、ラップトップと同じ IP アドレスをボタンが Wi-Fi ネットワークから受け取ったことを証明できなければなりませんでした。残念ながら、一部のワイヤレスネットワークで使用されるキャプティブポータルのために、一部の場所でボタンを接続するのに問題がありました。 次に、AT&T LTE-M ボタンを試しました。このボタンを今回のユースケースのために機能させることはできましたが、必要とされるほどユーザーフレンドリーではありませんでした。このボタンは、ホテルの部屋で VPN に接続するために使用している Wi-Fi ではなく、セルラーネットワークにあるため、IP アドレスを自動的に判断することができないのです。AWS IoT モバイルアプリケーションを使用して手動で設定しなければなりません。 […]

Read More

新機能 – Amazon SageMaker Neo – トレーニングしたモデルをどこでも実行

機械学習(Machine Learning: ML)は、トレーニングと推論という2つの異なるフェーズに分かれています。 トレーニングは、モデルを構築すること、すなわち、意味のあるパターンを識別するためにデータセット上で ML アルゴリズムを実行することを扱います。これには大量のストレージとコンピューティングパワーが必要なことが多く、クラウドは Amazon SageMaker や AWS Deep Learning AMI などのサービスで ML ジョブをトレーニングするためのうってつけな場所になります。 推論は、モデルの使用、すなわちモデルが一度も見たことがないデータサンプルの結果を予測することを扱います。ここでは、要件が異なります。開発者は通常、待ち時間(1回の予測でどれくらい時間がかかるか)とスループット(並列で実行できる予測の数)を最適化することに関心があります。 もちろん、リソースが制約されているデバイスを扱う場合は、予測環境のハードウェアアーキテクチャがこのようなメトリックに非常に大きな影響を与えます。Raspberry Pi の愛好家として、私はしばしば、若い仲間が私の推論コードをスピードアップするためにもう少し誘導して欲しいと思っています。 特定のハードウェアアーキテクチャーのモデルをチューニングすることは可能ですが、ツールの欠如が原因でエラーが発生しやすく時間がかかります。ML フレームワークやモデル自体にマイナーな変更を加えると、通常、ユーザーは再び最初からやり直す必要があります。残念なことに、ほとんどの ML 開発者は、基礎となるハードウェアにかかわらずどこでも同じモデルを展開する必要があり、パフォーマンスは大幅に向上しません。

Read More

Amazon FreeRTOSでBluetooth Low Energyが利用可能、Espressif ESP32で利用する例

Amazon Web Services (AWS) は、Amazon FreeRTOS BLEのベータ版を発表しました。本機能により組み込み開発者が、Bluetooth Low Energy (BLE) を使用するAmazon FreeRTOSデバイスをAndroidまたはiOS端末を通して安全にAWS IoTと接続することができます。Amazon FreeRTOSのBLEサポートにより、Wi-Fiを含む他の接続方法よりも低消費電力が必要なデバイス向けの新しいアプリケーション開発が可能になります。 Amazon FreeRTOSのBLEサポートにより、汎用的なAPI経由で標準のGeneric Access Profile (GAP)やGeneric Attributes (GATT)プロファイルを利用することで、Amazon FreeRTOS対応デバイス間で移植可能なBLEアプリケーションの作成や、AndroidやiOS SDKsを利用してAWS IoT機能と統合することが可能です。BLEの仕様によると、GAPはBLEデバイスがどのようにブロードキャストを有効にし、相互接続するかを定義している。GATTは、コネクションが接続されるとどのようにデータが転送されるかを記述している。

Read More

新機能 – AWS IoT Greengrassのデプロイがシンプル化、セキュリティ強化、柔軟性も向上しました

AWS IoT Greengrass では、ローカルコンピューティング、メッセージング、データキャッシング、同期、および機械学習の推論機能をエッジデバイスに導入することができます。 最新のリリースでは、Greengrass上で動作する Lambda 関数のデプロイを簡素化し、新しい環境に Greengrass を導入できるように柔軟性を高め、さらに使いやすいセキュリティ機能も追加しています。 サードパーティアプリケーションや AWS サービスへの接続、アイソレーションとアクセス権の設定を行うための AWS IoT Greengrass の設定オプションの追加、信頼の根幹となる秘密鍵のハードウェアストレージなど、AWS IoT Greengrass デバイスの機能を拡張する新機能を今日から使用できます。

Read More

AWS RoboMaker-インテリジェントなロボットアプリケーションの開発、テスト、デプロイと管理

私は何十年もの間ロボットをつくりたいと思っていましたが、今、私にはチャンスができました!私にとって、常時接続で相互に影響する部品の数が非常に多いということが課題でした。複雑なハードウェア、ソフトウェア、センサー、通信システム、および「ロボットの脳」は、ロボットが必要に応じて機能するために、すべて一緒に機能する必要があります。 これから、AWS RoboMakerについてお話しようと思います。この新しいサービスは、あなたの夢であるロボットの開発、シミュレート、テスト、およびデプロイの手助けをするサービスになります。クラウドベースの開発環境でコードを開発し、Gazeboシミュレーションでテストし、完成したコードを1つまたは複数のロボットの群に展開することができます。 コードをデプロイしたら、いくつかのクリックで、アップデートやバグ修正をあなたのフリートに適用することができます。 あなたのコードは、Amazon Lex、Polly、Amazon Rekognition、Amazon Kinesis Video Streams、Amazon CloudWatchなどのAWSサービスを利用して、洗練されたロボットの脳を構築し、ROS(Robotic Operating System)のパッケージとしてアクセスできます。 また、Amazon SageMakerモデルを構築してトレーニングして、ロボットの脳内で機械学習を利用することもできます。 RoboMakerは、さまざまな物理環境(ホームワークショップ、工場フロア、教室、レストラン、ホテル、または別の惑星)、さまざまな形状とサイズのロボットで動作するように設計されています。 それでは見てみましょう

Read More

AWS Dev Day Tokyo 2018 セキュリティセッション & ワークショップ 開催レポート

  皆様、こんにちは。セキュリティソリューションアーキテクトの桐山です。 2018/10/29(月)から11/2(金)にかけて開催されたAWS Dev Day Tokyo 2018で実施された、セキュリティ関連のセッションとワークショップをおさらいしてみます。 開発者向けカンファレンスということで、この度はセキュリティに興味のある多くの開発者にご参加いただきました。これから企業がデジタルトランスフォーメーション(DX)時代に向かっていく中、開発者の役割も更に高度化・専門化しています。 事業部門で、いわゆるSysmem of Engagement(SoE)領域に携わる開発者は、下記のような今までにない新しいワークロードをセキュアに開発することに挑戦しているでしょう。 IoTサービスにより、様々なデバイスから大量の信頼性の高い実データを収集する 企業内データを一元的に集約・保存する場所(データレイク)をセキュアに管理・運用する 迅速にビジネスインサイトを活用するために、データ分析・可視化・利用をサーバーレスコンピューティング環境で実現する 上のそれぞれに相当するIoTセキュリティ、データレイクセキュリティ、サーバーレスセキュリティは新しいセキュリティ技術領域と言えます。 一方で、IT部門にて、いわゆるSystems of Record(SoR)領域に携わる開発者は、事業成長を支えるセキュリティ基盤を実現しなければなりません。ITインフラ自体を変革させると同時に、事業活動の変化やスピードに対応するためにSecurity as a ServiceやSecurity Automationに取り組むことになるでしょう。 このようなDX時代のセキュリティをAWSで実現するとしたら・・・以下のワークショップとセッションが役に立つはずです。

Read More

AWS re:Invent 2018 で開催予定の IoT セッションのご案内

AWS re:Invent 2018の開催まであと僅か!スケジュールを立てる時にIoTセッションを逃してしまわない様にIoTセッションについて紹介したいと思います。今年は、インダストリアルやコネクテッドホームの事例、100を超えるブレイクアウトセッション、ワークショップ、よりディープダイブしたテクニカルなセッションなど、IoTサービスに関連する素晴らしいセッションがたくさんあります。Pentair, Vestel, VIZIO, Thermo Fisher Scientific, GE, Enel, Analog Devices, the City of San Jose, Ayla Networks, Deutsche Bahn, Fender, Hudl, FormCell, AISIN AWなど、ユーザーやパートナーの成功体験が聞けるセッションも見逃せません。今年のre:Inventでは、11/27(火) 6:00pmよりARIAで軽食やお飲み物をAWS IoTのエクスパートと一緒に楽しみめる、AWS IoTのpub crawlも予定しています。 AWS IoTのVP であるDirk DidascalouによるAWS IoTのリーダシップセッションや、AWS IoT GMのSarah CooperとDistinguished EngineerのJames GoslingによるAIoT: AI Meets IoTも見逃せません。 以下に紹介するセッションは、今年のハイライトセッションでもありますので、セッション参加のスケジュールを立てる際にはぜひ参考にしてみてください。ここでは紹介しきれないため、すべてのセッションの一覧は、re:Inventセッションカタログから参照ください。 インダストリアルIoTセッション インダストリアルIoT(IIoT)は、レガシーな産業機器やインフラストラクチャと新しいテクノロジーである機械学習、クラウド、モバイル、エッジコンピューティングとのギャップを埋めるものです。IIoTはカスタマーのこれらレガシーなものの運用を最適化し、生産性と効率を向上させます。 IIoTアプリケーションを使用することで、品質とメンテナンスの予測を可能にし、遠隔監視を実現することが出来ます。 以下のセッションに参加して、IIoTアプリケーションでAWS IoTをどの様に使うかを学ぶことが出来ます。 フェンダーがどのようにして生産の自動化をAWSでおこなっているか (Session IOT220-R) このセッションでは、コンピュータビジョンなどのIoTとAIテクノロジの組み合わせによって、製造プロセスの生産性を向上させる方法について説明します。AWSのIoTとAnalyticsを使用して、環境の状態を検知して制御する方法を示します。最後に、補充のシナリオにおける、巡回ベースのモデルから通知ベースのモデルに素早く移行する方法を示します。 インダストリアルIoT:既存の機械を未来のIoTに接続する。Deutsche Bahn […]

Read More

AWS IoT とサーバーレスデータレイクを使用したフロントライン脳震盪モニタリングシステムの構築方法 – パート 2

本シリーズのパート 1 では、データレイクをサポートするデータパイプラインの構築方法について説明しました。そのために、Amazon Kinesis Data Streams、Kinesis Data Analytics、Kinesis Data Firehose、および AWS Lambda などの AWS の主なサービスを使用しました。パート 2 では、主要分析を使って実用的なデータを作成するサーバーレスデータレイクを作成することによってデータを処理し、可視化する方法について説明します。 サーバーレスデータレイクの作成と、AWS Glue、Amazon Athena、および Amazon QuickSight を使用したデータの調査 パート 1 で説明した通り、心拍数データは Kinesis Data Streams を使用して Amazon S3 バケットに保存できます。しかし、リポジトリにデータを保存するだけでは十分ではありません。分析のための有意義なデータを抽出できるように、リポジトリに関連する関連メタデータをカタログ化し、保存することができる必要もあります。 サーバーレスデータレイクには、完全マネージド型のデータカタログおよび ETL (抽出、変換、ロード) サービスである AWS Glue を使用できます。AWS Glue は、困難で時間のかかるデータ検出、変換、およびジョブスケジュールのタスクを簡素化し、自動化します。AWS Glue Data Catalog のデータを最適なパフォーマンスのためにパーティション分割して圧縮すると、S3 データへの直接クエリのために Amazon Athena を使用できます。その後、Amazon QuickSight を使用してデータを可視化できます。 以下の図は、このデモで作成されるデータレイクを表しています。 今現在、Amazon S3 […]

Read More