AWS Big Data Blog

Category: Analytics

Run Mixed Workloads with Amazon Redshift Workload Management

This blog post has been translated into Japanese.  Mixed workloads run batch and interactive workloads (short-running and long-running queries or reports) concurrently to support business needs or demand. Typically, managing and configuring mixed workloads requires a thorough understanding of access patterns, how the system resources are being used and performance requirements. It’s common for mixed […]

Read More

Converging Data Silos to Amazon Redshift Using AWS DMS

Organizations often grow organically—and so does their data in individual silos. Such systems are often powered by traditional RDBMS systems and they grow orthogonally in size and features. To gain intelligence across heterogeneous data sources, you have to join the data sets. However, this imposes new challenges, as joining data over dblinks or into a […]

Read More

Create a Healthcare Data Hub with AWS and Mirth Connect

As anyone visiting their doctor may have noticed, gone are the days of physicians recording their notes on paper. Physicians are more likely to enter the exam room with a laptop than with paper and pen. This change is the byproduct of efforts to improve patient outcomes, increase efficiency, and drive population health. Pushing for […]

Read More

Decreasing Game Churn: How Upopa used ironSource Atom and Amazon ML to Engage Users

This is a guest post by Tom Talpir, Software Developer at ironSource. ironSource is as an Advanced AWS Partner Network (APN) Technology Partner and an AWS Big Data Competency Partner. Ever wondered what it takes to keep a user from leaving your game or application after all the hard work you put in? Wouldn’t it be great […]

Read More

Powering Amazon Redshift Analytics with Apache Spark and Amazon Machine Learning

Air travel can be stressful due to the many factors that are simply out of airline passengers’ control. As passengers, we want to minimize this stress as much as we can. We can do this by using past data to make predictions about how likely a flight will be delayed based on the time of […]

Read More

Serving Real-Time Machine Learning Predictions on Amazon EMR

The typical progression for creating and using a trained model for recommendations falls into two general areas: training the model and hosting the model. Model training has become a well-known standard practice. We want to highlight one of many ways to host those recommendations (for example, see the Analyzing Genomics Data at Scale using R, […]

Read More

Derive Insights from IoT in Minutes using AWS IoT, Amazon Kinesis Firehose, Amazon Athena, and Amazon QuickSight

Ben Snively is a Solutions Architect with AWS Speed and agility are essential with today’s analytics tools. The quicker you can get from idea to first results, the more you can experiment and innovate with your data, perform ad-hoc analysis, and drive answers to new business questions. Serverless architectures help in this respect by taking […]

Read More

Respond to State Changes on Amazon EMR Clusters with Amazon CloudWatch Events

Jonathan Fritz is a Senior Product Manager for Amazon EMR Customers can take advantage of the Amazon EMR API to create and terminate EMR clusters, scale clusters using Auto Scaling or manual resizing, and submit and run Apache Spark, Apache Hive, or Apache Pig workloads. These decisions are often triggered from cluster state-related information. Previously, […]

Read More

Building an Event-Based Analytics Pipeline for Amazon Game Studios’ Breakaway

All software developers strive to build products that are functional, robust, and bug-free, but video game developers have an extra challenge: they must also create a product that entertains. When designing a game, developers must consider how the various elements—such as characters, story, environment, and mechanics—will fit together and, more importantly, how players will interact […]

Read More