AWS Big Data Blog

Scale your cloud data warehouse and reduce costs with the new Amazon Redshift RA3 nodes with managed storage

One of our favorite things about working on Amazon Redshift, the cloud data warehouse service at AWS, is the inspiring stories from customers about how they’re using data to gain business insights. Many of our recent engagements have been with customers upgrading to the new instance type, Amazon Redshift RA3 with managed storage. In this […]

Read More

Enhancing customer safety by leveraging the scalable, secure, and cost-optimized Toyota Connected Data Lake

Toyota Motor Corporation (TMC), a global automotive manufacturer, has made “connected cars” a core priority as part of its broader transformation from an auto company to a mobility company. In recent years, TMC and its affiliate technology and big data company, Toyota Connected, have developed an array of new technologies to provide connected services that […]

Read More

Optimize Python ETL by extending Pandas with AWS Data Wrangler

Developing extract, transform, and load (ETL) data pipelines is one of the most time-consuming steps to keep data lakes, data warehouses, and databases up to date and ready to provide business insights. You can categorize these pipelines into distributed and non-distributed, and the choice of one or the other depends on the amount of data […]

Read More

Integrating the MongoDB Cloud with Amazon Kinesis Data Firehose

With the release of Kinesis Data Firehose HTTP endpoint delivery, you can now stream your data through Amazon Kinesis or directly push data to Kinesis Data Firehose and configure it to deliver data to MongoDB Atlas. You can also configure Kinesis Data Firehose to transform the data before delivering it to its destination. You don’t have to write applications and manage resources to read data and push to MongoDB. It’s all managed by AWS, making it easier to estimate costs for your data based on your data volume. In this post, we discuss how to integrate Kinesis Data Firehose and MongoDB Cloud and demonstrate how to stream data from your source to MongoDB Atlas.

Read More

Creating customized Vega visualizations in Amazon Elasticsearch Service

This post shows how to implement Vega visualizations included in Kibana, which is part of Amazon Elasticsearch Service (Amazon ES), using a real-world clickstream data sample. Vega visualizations are an integrated scripting mechanism of Kibana to perform on-the-fly computations on raw data to generate D3.js visualizations. For this post, we use a fully automated setup using AWS CloudFormation to show how to build a customized histogram for a web analytics use case. This example implements an ad hoc map-reduce like aggregation of the underlying data for a histogram.

Read More

Stream Twitter data into Amazon Redshift using Amazon MSK and AWS Glue streaming ETL

This post demonstrates how customers, system integrator (SI) partners, and developers can use the serverless streaming ETL capabilities of AWS Glue with Amazon Managed Streaming for Kafka (Amazon MSK) to stream data to a data warehouse such as Amazon Redshift. We also show you how to view Twitter streaming data on Amazon QuickSight via Amazon Redshift.

Read More

Monitor and Optimize Analytic Workloads on Amazon EMR with Prometheus and Grafana

This post discusses installing and configuring Prometheus and Grafana on an Amazon Elastic Compute Cloud (Amazon EC2) instance, configuring an EMR cluster to emit metrics that Prometheus can scrape from the cluster, and using the Grafana dashboards to analyze the metrics for a workload on the EMR cluster and optimize it. Additionally, we also cover how Prometheus can push alerts to the Alertmanager, and configuring Amazon SNS to send email notifications.

Read More

Vortexa delivers real-time insights on Amazon MSK with Lenses.io

This post discusses how Vortexa harnesses the power of Apache Kafka to improve real-time data accuracy and accelerate time-to-market by using a combination of Lenses.io for greater observability and Amazon Managed Streaming for Apache Kafka (Amazon MSK) to create clusters on demand.

Read More

Anonymize and manage data in your data lake with Amazon Athena and AWS Lake Formation

Most organizations have to comply with regulations when dealing with their customer data. For that reason, datasets that contain personally identifiable information (PII) is often anonymized. A common example of PII can be tables and columns that contain personal information about an individual (such as first name and last name) or tables with columns that, if joined with another table, can trace back to an individual. You can use AWS Analytics services to anonymize your datasets. In this post, I describe how to use Amazon Athena to anonymize a dataset.  You can then use AWS Lake Formation to provide the right access to the right personas.

Read More