AWS Big Data Blog

Tag: EMR

Install Python libraries on a running cluster with EMR Notebooks

This post discusses installing notebook-scoped libraries on a running cluster directly via an EMR Notebook. Before this feature, you had to rely on bootstrap actions or use custom AMI to install additional libraries that are not pre-packaged with the EMR AMI when you provision the cluster. This post also discusses how to use the pre-installed Python libraries available locally within EMR Notebooks to analyze and plot your results. This capability is useful in scenarios in which you don’t have access to a PyPI repository but need to analyze and visualize a dataset.

Read More

Implement perimeter security in Amazon EMR using Apache Knox

Perimeter security helps secure Apache Hadoop cluster resources to users accessing from outside the cluster. It enables a single access point for all REST and HTTP interactions with Apache Hadoop clusters and simplifies client interaction with the cluster. For example, client applications must acquire Kerberos tickets using Kinit or SPNEGO before interacting with services on Kerberos enabled clusters. In this post, we walk through setup of Apache Knox to enable perimeter security for EMR clusters.

Read More

Migrate and deploy your Apache Hive metastore on Amazon EMR

Combining the speed and flexibility of Amazon EMR with the utility and ubiquity of Apache Hive provides you with the best of both worlds. However, getting started with big data projects can feel intimidating. Whether you want to deploy new data on EMR or migrate an existing project, this post provides you with the basics to get started.

Read More

Trigger cross-region replication of pre-existing objects using Amazon S3 inventory, Amazon EMR, and Amazon Athena

In Amazon Simple Storage Service (Amazon S3), you can use cross-region replication (CRR) to copy objects automatically and asynchronously across buckets in different AWS Regions. CRR is a bucket-level configuration, and it can help you meet compliance requirements and minimize latency by keeping copies of your data in different Regions. CRR replicates all objects in […]

Read More

EMR Notebooks: A managed analytics environment based on Jupyter notebooks

Notebooks are increasingly becoming the standard tool for interactively developing big data applications. It’s easy to see why. Their flexible architecture allows you to experiment with data in multiple languages, test code interactively, and visualize large datasets. To help scientists and developers easily access notebook tools, we launched Amazon EMR Notebooks, a managed notebook environment […]

Read More

Test data quality at scale with Deequ

In this blog post, we introduce Deequ, an open source tool developed and used at Amazon. Deequ allows you to calculate data quality metrics on your dataset, define and verify data quality constraints, and be informed about changes in the data distribution. Instead of implementing checks and verification algorithms on your own, you can focus on describing how your data should look.

Read More

Optimize Amazon EMR costs with idle checks and automatic resource termination using advanced Amazon CloudWatch metrics and AWS Lambda

Many customers use Amazon EMR to run big data workloads, such as Apache Spark and Apache Hive queries, in their development environment. Data analysts and data scientists frequently use these types of clusters, known as analytics EMR clusters. Users often forget to terminate the clusters after their work is done. This leads to idle running […]

Read More