AWS Database Blog
Category: Database
Understand the benefits of physical replication in Amazon RDS for PostgreSQL Blue/Green Deployments
With the recent addition of physical replication as an option for RDS Blue/Green Deployments, you can overcome most of the limitations of logical replication. This makes physical replication particularly well-suited for use cases like minor version upgrades, schema changes (DDL operations) in the blue environment, and storage adjustments. In this post, we delve into the advantages of using physical replication in RDS for PostgreSQL blue/green deployments to simplify database operations and scale with application demands. We explore the key benefits of physical replication and provide a step-by-step guide to help you get started with this new capability.
Join your Amazon RDS for Db2 instances across accounts to a single shared domain
With Amazon RDS for Db2, you can seamlessly authenticate your users and groups with or without Kerberos authentication using a single AWS Microsoft AD directory that can serve multiple accounts. In this post, we use AWS Managed Microsoft AD from an AWS account to provide Microsoft AD authentication to Amazon RDS for Db2 in a different account.
Scaling to 70M users: How Flo Health optimized Amazon DynamoDB for cost and performance
Flo is the largest app in the Health and Fitness category worldwide, with 70 million monthly active users. In this post, we explain best practices Flo implemented to scale to more than 70 million monthly active users while achieving 60% cost efficiency with Amazon DynamoDB.
Capture data changes while restoring an Amazon DynamoDB table
This is the first post of a series dedicated to table restores and data integrity. In this post, we present a solution that automates the PITR restoration process and handles data changes that occur during the restoration, providing a fluid transition back to the restored DynamoDB table with near-zero downtime. This solution enables you to restore a DynamoDB table efficiently with minimum impact your application.
Best practices for maintenance activities in Amazon RDS for Oracle
The Amazon RDS for Oracle User Guide provides comprehensive coverage of the maintenance activities in Amazon RDS for Oracle. However, it could be cumbersome to quickly learn about the best practices around various maintenance activities in Amazon RDS for Oracle from the user guide. In this post, we describe the key maintenance activities and the best practices to be followed for each of them.
Using RDS Proxy with Amazon RDS Multi-AZ DB instance deployment to improve planned failover time
In this post, we demonstrate improvements in planned failover downtime of Multi-AZ instance deployment with Amazon RDS Proxy, a result of several optimizations made by RDS. In the event of a failure, Amazon RDS automatically switches the roles of the primary and standby instances and updates the IP address associated with the database’s DNS (hostname). This allows client applications to maintain their connection settings during failover. This process, known as DNS propagation, can take up to 35 seconds to complete. RDS Proxy eliminates the 35 seconds of DNS propagation delay by continuously monitoring both instances, allowing it to bypass DNS propagation. This allows RDS Proxy to deliver a faster failover response for client applications, maximizing availability during failovers.
How Firmex used AWS SCT and AWS DMS to move 65,000 on-premises Microsoft SQL Server databases to an Amazon Aurora PostgreSQL cluster
This post is co-authored with Eric Boyer and Maria Hristova of Firmex. Firmex is a leading Virtual Data Room provider with more than 20,000 new rooms opened every year. In this post, we discuss how and why Firmex migrated 65,000 databases heterogeneously from their on-premises SQL Server to Amazon Aurora PostgreSQL-Compatible Edition.
Accelerate your generative AI application development with Amazon Bedrock Knowledge Bases Quick Create and Amazon Aurora Serverless
In this post, we look at two capabilities in Amazon Bedrock Knowledge Bases that make it easier to build RAG workflows with Amazon Aurora Serverless v2 as the vector store. The first capability helps you easily create an Aurora Serverless v2 knowledge base to use with Amazon Bedrock and the second capability enables you to automate deploying your RAG workflow across environments.
Prevent transaction ID wraparound by using postgres_get_av_diag() for monitoring autovacuum
In this post, we introduce postgres_get_av_diag(), a new function available in RDS for PostgreSQL to monitor aggressive autovacuum blockers. By using this function, you can identify and address performance and availability risks through actionable insights provided by postgres_get_av_diag().
From caching to real-time analytics: Essential use cases for Amazon ElastiCache for Valkey
Valkey is an open-source, distributed, in-memory key-value data store that offers high-performance data retrieval and storage capabilities, making it an ideal choice for scalable, low-latency modern application development. Originating as a fork of Redis OSS following recent licensing changes, Valkey maintains full compatibility with its predecessor while providing high performance alternative for its developers. Valkey […]