AWS Machine Learning Blog

Category: Amazon QuickSight

Detecting and visualizing telecom network outages from tweets with Amazon Comprehend

In today’s world, social media has become a place where customers share their experiences with services that they consume. Every telecom provider wants to have the ability to understand their customer pain points as soon as possible and to do this carriers frequently establish a social media team within their NOC (network operation center). This […]

Visualizing Amazon SageMaker machine learning predictions with Amazon QuickSight

AWS is excited to announce the general availability of Amazon SageMaker integration in QuickSight. You can now integrate your own Amazon SageMaker ML models with QuickSight to analyze the augmented data and use it directly in your business intelligence dashboards. As a business analyst, data engineer, or data scientist, you can perform ML inference in […]

Build forecasts and find anomalies from your data with Amazon QuickSight ML Insights

As technology is advancing, your business is collecting more and more data from different sources. After collecting so many data points, it is often challenging to find the right insights to help your business grow. Dashboards are great at visualizing your data, based upon how you built them, but not always great at finding hidden […]

Building a business intelligence dashboard for your Amazon Lex bots

July 2024: The solution in this blog post is now obsolete with the release of Amazon Lex V2. You’ve rolled out a conversational interface powered by Amazon Lex, with a goal of improving the user experience for your customers. Now you want to track how well it’s working. Are your customers finding it helpful? How are […]

Shopper Sentiment: Analyzing in-store customer experience

Retailers have been using in-store video to analyze customer behaviors and demographics for many years.  Separate systems are commonly used for different tasks.  For example, one system would count the number of customers moving through a store, in which part of the store those customers linger and near which products.  Another system will hold the store layout, whilst yet […]

How to scale sentiment analysis using Amazon Comprehend, AWS Glue and Amazon Athena

Today consumers are encouraged to express their satisfaction or frustration with a company or product through social media, blogs, and review platforms. Sentiment analysis can help companies better understand their customers’ opinions and needs and make more informed business decisions. Amazon released a dataset to the public with over 130 million product reviews in multiple […]

Build a social media dashboard using machine learning and BI services

In this blog post we’ll show you how you can use Amazon Translate, Amazon Comprehend, Amazon Kinesis, Amazon Athena, and Amazon QuickSight to build a natural-language-processing (NLP)-powered social media dashboard for tweets. Social media interactions between organizations and customers deepen brand awareness. These conversations are a low-cost way to acquire leads, improve website traffic, develop […]