AWS Machine Learning Blog

Category: Artificial Intelligence

Technology Innovation Institute trains the state-of-the-art Falcon LLM 40B foundation model on Amazon SageMaker

This blog post is co-written with Dr. Ebtesam Almazrouei, Executive Director–Acting Chief AI Researcher of the AI-Cross Center Unit and Project Lead for LLM Projects at TII. United Arab Emirate’s (UAE) Technology Innovation Institute (TII), the applied research pillar of Abu Dhabi’s Advanced Technology Research Council, has launched Falcon LLM, a foundational large language model […]

Build high-performance ML models using PyTorch 2.0 on AWS – Part 1

PyTorch is a machine learning (ML) framework that is widely used by AWS customers for a variety of applications, such as computer vision, natural language processing, content creation, and more. With the recent PyTorch 2.0 release, AWS customers can now do same things as they could with PyTorch 1.x but faster and at scale with […]

Arrange your transcripts into paragraphs with Amazon Transcribe

Amazon Transcribe is a speech recognition service that generates transcripts from video and audio files in multiple supported languages and accents. It comes with a rich set of features, including automatic language identification, multi-channel and multi-speaker support, custom vocabularies, and transcript redaction. Amazon Transcribe supports two modes of operation: batch and streaming. In batch mode, […]

Build machine learning-ready datasets from the Amazon SageMaker offline Feature Store using the Amazon SageMaker Python SDK

Amazon SageMaker Feature Store is a purpose-built service to store and retrieve feature data for use by machine learning (ML) models. Feature Store provides an online store capable of low-latency, high-throughput reads and writes, and an offline store that provides bulk access to all historical record data. Feature Store handles the synchronization of data between […]

Use Amazon SageMaker Canvas to build machine learning models using Parquet data from Amazon Athena and AWS Lake Formation

Data is the foundation for machine learning (ML) algorithms. One of the most common formats for storing large amounts of data is Apache Parquet due to its compact and highly efficient format. This means that business analysts who want to extract insights from the large volumes of data in their data warehouse must frequently use […]

Amazon SageMaker Automatic Model Tuning now automatically chooses tuning configurations to improve usability and cost efficiency

Amazon SageMaker Automatic Model Tuning has introduced Autotune, a new feature to automatically choose hyperparameters on your behalf. This provides an accelerated and more efficient way to find hyperparameter ranges, and can provide significant optimized budget and time management for your automatic model tuning jobs. In this post, we discuss this new capability and some […]

Train a Large Language Model on a single Amazon SageMaker GPU with Hugging Face and LoRA

This post is co-written with Philipp Schmid from Hugging Face. We have all heard about the progress being made in the field of large language models (LLMs) and the ever-growing number of problem sets where LLMs are providing valuable insights. Large models, when trained over massive datasets and several tasks, are also able to generalize […]

Announcing the launch of new Hugging Face LLM Inference containers on Amazon SageMaker

This post is co-written with Philipp Schmid and Jeff Boudier from Hugging Face. Today, as part of Amazon Web Services’ partnership with Hugging Face, we are excited to announce the release of a new Hugging Face Deep Learning Container (DLC) for inference with Large Language Models (LLMs). This new Hugging Face LLM DLC is powered […]

Implement a multi-object tracking solution on a custom dataset with Amazon SageMaker

The demand for multi-object tracking (MOT) in video analysis has increased significantly in many industries, such as live sports, manufacturing, and traffic monitoring. For example, in live sports, MOT can track soccer players in real time to analyze physical performance such as real-time speed and moving distance. Since its introduction in 2021, ByteTrack remains to […]

Translate documents in real time with Amazon Translate

A critical component of business success is the ability to connect with customers. Businesses today want to connect with their customers by offering their content across multiple languages in real time. For most customers, the content creation process is disconnected from the localization effort of translating content into multiple target languages. These disconnected processes delay […]