Artificial Intelligence
Category: Industries
How LinqAlpha assesses investment theses using Devil’s Advocate on Amazon Bedrock
LinqAlpha is a Boston-based multi-agent AI system built specifically for institutional investors. The system supports and streamlines agentic workflows across company screening, primer generation, stock price catalyst mapping, and now, pressure-testing investment ideas through a new AI agent called Devil’s Advocate. In this post, we share how LinqAlpha uses Amazon Bedrock to build and scale Devil’s Advocate.
How Amazon uses Amazon Nova models to automate operational readiness testing for new fulfillment centers
In this post, we discuss how Amazon Nova in Amazon Bedrock can be used to implement an AI-powered image recognition solution that automates the detection and validation of module components, significantly reducing manual verification efforts and improving accuracy.
Accelerating your marketing ideation with generative AI – Part 2: Generate custom marketing images from historical references
Building upon our earlier work of marketing campaign image generation using Amazon Nova foundation models, in this post, we demonstrate how to enhance image generation by learning from previous marketing campaigns. We explore how to integrate Amazon Bedrock, AWS Lambda, and Amazon OpenSearch Serverless to create an advanced image generation system that uses reference campaigns to maintain brand guidelines, deliver consistent content, and enhance the effectiveness and efficiency of new campaign creation.
How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions
In this post, we illustrate how Clarus Care, a healthcare contact center solutions provider, worked with the AWS Generative AI Innovation Center (GenAIIC) team to develop a generative AI-powered contact center prototype. This solution enables conversational interaction and multi-intent resolution through an automated voicebot and chat interface. It also incorporates a scalable service model to support growth, human transfer capabilities–when requested or for urgent cases–and an analytics pipeline for performance insights.
How the Amazon AMET Payments team accelerates test case generation with Strands Agents
In this post, we explain how we overcame the limitations of single-agent AI systems through a human-centric approach, implemented structured outputs to significantly reduce hallucinations and built a scalable solution now positioned for expansion across the AMET QA team and later across other QA teams in International Emerging Stores and Payments (IESP) Org.
How AutoScout24 built a Bot Factory to standardize AI agent development with Amazon Bedrock
In this post, we explore the architecture that AutoScout24 used to build their standardized AI development framework, enabling rapid deployment of secure and scalable AI agents.
Scaling medical content review at Flo Health using Amazon Bedrock (Part 1)
This two-part series explores Flo Health’s journey with generative AI for medical content verification. Part 1 examines our proof of concept (PoC), including the initial solution, capabilities, and early results. Part 2 covers focusing on scaling challenges and real-world implementation. Each article stands alone while collectively showing how AI transforms medical content management at scale.
Advancing ADHD diagnosis: How Qbtech built a mobile AI assessment Model Using Amazon SageMaker AI
In this post, we explore how Qbtech streamlined their machine learning (ML) workflow using Amazon SageMaker AI, a fully managed service to build, train and deploy ML models, and AWS Glue, a serverless service that makes data integration simpler, faster, and more cost effective. This new solution reduced their feature engineering time from weeks to hours, while maintaining the high clinical standards required by healthcare providers.
Train custom computer vision defect detection model using Amazon SageMaker
In this post, we demonstrate how to migrate computer vision workloads from Amazon Lookout for Vision to Amazon SageMaker AI by training custom defect detection models using pre-trained models available on AWS Marketplace. We provide step-by-step guidance on labeling datasets with SageMaker Ground Truth, training models with flexible hyperparameter configurations, and deploying them for real-time or batch inference—giving you greater control and flexibility for automated quality inspection use cases.
Physical AI in practice: Technical foundations that fuel human-machine interactions
In this post, we explore the complete development lifecycle of physical AI—from data collection and model training to edge deployment—and examine how these intelligent systems learn to understand, reason, and interact with the physical world through continuous feedback loops. We illustrate this workflow through Diligent Robotics’ Moxi, a mobile manipulation robot that has completed over 1.2 million deliveries in hospitals, saving nearly 600,000 hours for clinical staff while transforming healthcare logistics and returning valuable time to patient care.









