AWS Machine Learning Blog
Category: Learning Levels
Improve scalability for Amazon Rekognition stateless APIs using multiple regions
In previous blog post, we described an end-to-end identity verification solution in a single AWS Region. The solution uses the Amazon Rekognition APIs DetectFaces for face detection and CompareFaces for face comparison. We think of those APIs as stateless APIs because they don’t depend on an Amazon Rekognition face collection. They’re also idempotent, meaning repeated […]
Use your own training scripts and automatically select the best model using hyperparameter optimization in Amazon SageMaker
The success of any machine learning (ML) pipeline depends not just on the quality of model used, but also the ability to train and iterate upon this model. One of the key ways to improve an ML model is by choosing better tunable parameters, known as hyperparameters. This is known as hyperparameter optimization (HPO). However, […]
Build a robust text-based toxicity predictor
With the growth and popularity of online social platforms, people can stay more connected than ever through tools like instant messaging. However, this raises an additional concern about toxic speech, as well as cyber bullying, verbal harassment, or humiliation. Content moderation is crucial for promoting healthy online discussions and creating healthy online environments. To detect […]
Introducing one-step classification and entity recognition with Amazon Comprehend for intelligent document processing
“Intelligent document processing (IDP) solutions extract data to support automation of high-volume, repetitive document processing tasks and for analysis and insight. IDP uses natural language technologies and computer vision to extract data from structured and unstructured content, especially from documents, to support automation and augmentation.” – Gartner The goal of Amazon’s intelligent document processing (IDP) […]
Interactive data prep widget for notebooks powered by Amazon SageMaker Data Wrangler
According to a 2020 survey of data scientists conducted by Anaconda, data preparation is one of the critical steps in machine learning (ML) and data analytics workflows, and often very time consuming for data scientists. Data scientists spend about 66% of their time on data preparation and analysis tasks, including loading (19%), cleaning (26%), and […]
Organize machine learning development using shared spaces in SageMaker Studio for real-time collaboration
Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models. Within an Amazon SageMaker Domain, users can provision a personal Amazon SageMaker Studio IDE application, which […]
Improve governance of your machine learning models with Amazon SageMaker
As companies are increasingly adopting machine learning (ML) for their mainstream enterprise applications, more of their business decisions are influenced by ML models. As a result of this, having simplified access control and enhanced transparency across all your ML models makes it easier to validate that your models are performing well and take action when […]
Define customized permissions in minutes with Amazon SageMaker Role Manager
Administrators of machine learning (ML) workloads are focused on ensuring that users are operating in the most secure manner, striving towards a principal of least privilege design. They have a wide variety of personas to account for, each with their own unique sets of needs, and building the right sets of permissions policies to meet […]
Build an agronomic data platform with Amazon SageMaker geospatial capabilities
The world is at increasing risk of global food shortage as a consequence of geopolitical conflict, supply chain disruptions, and climate change. Simultaneously, there’s an increase in overall demand from population growth and shifting diets that focus on nutrient- and protein-rich food. To meet the excess demand, farmers need to maximize crop yield and effectively […]
Separate lines of business or teams with multiple Amazon SageMaker domains
Amazon SageMaker Studio is a fully integrated development environment (IDE) for machine learning (ML) that enables data scientists and developers to perform every step of the ML workflow, from preparing data to building, training, tuning, and deploying models. To access SageMaker Studio, Amazon SageMaker Canvas, or other Amazon ML environments like RStudio on Amazon SageMaker, […]