AWS Machine Learning Blog
Category: Amazon SageMaker
Improve ML developer productivity with Weights & Biases: A computer vision example on Amazon SageMaker
The content and opinions in this post are those of the third-party author and AWS is not responsible for the content or accuracy of this post. As more organizations use deep learning techniques such as computer vision and natural language processing, the machine learning (ML) developer persona needs scalable tooling around experiment tracking, lineage, and […]
Read MoreHow Cepsa used Amazon SageMaker and AWS Step Functions to industrialize their ML projects and operate their models at scale
This blog post is co-authored by Guillermo Ribeiro, Sr. Data Scientist at Cepsa. Machine learning (ML) has rapidly evolved from being a fashionable trend emerging from academic environments and innovation departments to becoming a key means to deliver value across businesses in every industry. This transition from experiments in laboratories to solving real-world problems in […]
Read MoreMLOps foundation roadmap for enterprises with Amazon SageMaker
As enterprise businesses embrace machine learning (ML) across their organizations, manual workflows for building, training, and deploying ML models tend to become bottlenecks to innovation. To overcome this, enterprises needs to shape a clear operating model defining how multiple personas, such as data scientists, data engineers, ML engineers, IT, and business stakeholders, should collaborate and […]
Read MoreManage AutoML workflows with AWS Step Functions and AutoGluon on Amazon SageMaker
Running machine learning (ML) experiments in the cloud can span across many services and components. The ability to structure, automate, and track ML experiments is essential to enable rapid development of ML models. With the latest advancements in the field of automated machine learning (AutoML), namely the area of ML dedicated to the automation of […]
Read MoreImport data from cross-account Amazon Redshift in Amazon SageMaker Data Wrangler for exploratory data analysis and data preparation
Organizations moving towards a data-driven culture embrace the use of data and machine learning (ML) in decision-making. To make ML-based decisions from data, you need your data available, accessible, clean, and in the right format to train ML models. Organizations with a multi-account architecture want to avoid situations where they must extract data from one […]
Read MorePredict types of machine failures with no-code machine learning using Amazon SageMaker Canvas
Predicting common machine failure types is critical in manufacturing industries. Given a set of characteristics of a product that is tied to a given type of failure, you can develop a model that can predict the failure type when you feed those attributes to a machine learning (ML) model. ML can help with insights, but […]
Read MoreVisual inspection automation using Amazon SageMaker JumpStart
According to Gartner, hyperautomation is the number one trend in 2022 and will continue advancing in future. One of the main barriers to hyperautomation is in areas where we’re still struggling to reduce human involvement. Intelligent systems have a hard time matching human visual recognition abilities, despite great advancements in deep learning in computer vision. […]
Read MoreIdentify mangrove forests using satellite image features using Amazon SageMaker Studio and Amazon SageMaker Autopilot – Part 2
Mangrove forests are an important part of a healthy ecosystem, and human activities are one of the major reasons for their gradual disappearance from coastlines around the world. Using a machine learning (ML) model to identify mangrove regions from a satellite image gives researchers an effective way to monitor the size of the forests over […]
Read MoreIdentify mangrove forests using satellite image features using Amazon SageMaker Studio and Amazon SageMaker Autopilot – Part 1
The increasing ubiquity of satellite data over the last two decades is helping scientists observe and monitor the health of our constantly changing planet. By tracking specific regions of the Earth’s surface, scientists can observe how regions like forests, water bodies, or glaciers change over time. One such region of interest for geologists is mangrove […]
Read MoreHow to scale machine learning inference for multi-tenant SaaS use cases
This post is co-written with Sowmya Manusani, Sr. Staff Machine Learning Engineer at Zendesk Zendesk is a SaaS company that builds support, sales, and customer engagement software for everyone, with simplicity as the foundation. It thrives on making over 170,000 companies worldwide serve their hundreds of millions of customers efficiently. The Machine Learning team at […]
Read More