Amazon Web Services ブログ

Category: AWS IoT Analytics

Pelion Device Management 管理下のマイコンデバイスにおけるデータの分析・可視化とアラート通知

温度や湿度、加速度などのセンサーを設備に取り付け、その値をクラウドに上げて可視化する、といったユースケースは、商業施設や工場など様々なユースケースで求められています。AWS IoTをはじめとする、AWSのサービスを使うことで、そういったユースケースをすばやく実現することが可能です。これはAWS IoTで管理されているデバイスに限った話ではありません。他のデバイス管理ソリューションをお使いの場合においても、クラウドアプリケーションやデータ分析の用途でAWSをシームレスに利用頂くことができます。 この記事では、Arm Pelion Device Management上で管理されているデバイスから、ログデータをAWS IoT にアップロードし、分析・可視化を行う方法について、具体的な構築手順をご紹介します。ここではWi-Fi環境がない設置場所を想定し、通信手段として3G回線を使用します。また施設内のアラートを管理者に伝えるといったシーンを想定し、記事の後半ではデバイスのボタンを押すと管理者にメールが届く仕組みも構築します。最後に、身近なデバイスでクラウド開発のPoCをクイックに進める手段として、Pelion Device Managementで管理されているRaspberry PiでAWS IoT Coreに接続する方法を紹介します。 概要 今回構築する仕組みは、上記のようなアーキテクチャになります。まず、Mbed OSが動作するマイコンが、Pelion Device Managementで管理されています。デバイスは、MQTTプロトコルによって時系列のセンサーデータを3G回線を経由してIoT Coreへアップロードします。IoT Coreのルールエンジンを使って、分析対象のデータのみをIoT Analyticsに送ります。IoT Analyticsでは、収集、処理、保存といった分析の前処理を行いデータセットを作成します。最後に作成したデータセットをQuickSightからアクセスすることでセンサーの時系列データをグラフ描画することが可能になります。 さらに、ここでは触れませんが、AWS IoT Analyticsを用いて作成したデータセットをAmazon SageMakerというAI・MLのサービスにわたすことで、機械学習による高度な予兆保全や、アノマリー検出なども可能になります。 AWS IoTの認証には、2020年5月に追加されたAWS IoT CoreのMulti-Account Registrationの機能を使用します。これによって、Pelion Device Managementで発行された証明書をIoT Coreに設定するだけで、デバイスは1つの証明書を使って接続することができます。 準備 こちらの記事 の4.2章までを実施し、SIMの設定、センサーおよびボタンの接続、Pelion Portal Account の設定を進めてください。以下は、事前に用意していただくハードウェアです。 使用するハードウェア Seeed Wio 3G GROVE – 温湿度・気圧センサ(BME280) GROVE – 青LEDボタン SIMカード Raspberry Pi 3 […]

Read More

ユーティリティにおけるAWS IoTを用いた分析・可視化(北海道ガス株式会社の事例)

電気ガス水道などの公共事業において、設備をIoT化しクラウドと連携する動きは、日々加速しています。 ユーティリティ設備においてクラウドに繋がることによるメリットとしては、主に以下のようなものが挙げられます。 省人化によるコスト削減 点検、保守など、人が行っている作業の自動化・半自動化することによって、コスト削減が図られるケースがあります。例としては、保守が必要なタイミングをシステムが判断することで、施設への訪問回数の削減を行ったり、設備のリモート操作を可能にすることにより、訪問自体を無くすことが挙げられます。 新たな付加価値を利用者に提供 ガスの使用量などの情報を紙ではなく、電子化し、スマートフォンやPC上でいつでも確認できるようにしたり、ユーザーの利用傾向をインテリジェントに分析し、最適なプランや利用料を下げる方法があります。 この投稿では、一つの事例として、北海道ガス株式会社(以下、北ガス(読み方:キタガス))様の例を取り上げます。北ガス様は、AWS IoTのサービスを活用することで、大規模なインフラ構築の投資不要で、高速にPoCを実施しています。北ガス様の抱える課題と、その課題解決のためにどのようにAWS IoT のサービスを活用しているかについて、技術的な視点でご紹介したいとおもいます。 エネルギーサービス事業における課題 北ガス様は、北海道エリア内にて都市ガス事業・電力事業を主なビジネスとして手がける総合エネルギーサービス事業者です。持続可能な社会を支え、北海道に最適なエネルギー社会を創造するべく、ガス、電気、熱、再生可能エネルギーの最適利用と、デジタル技術の高度活用を通じて「持続性」「環境性」「経済性」に優れた新たなエネルギーシステムの構築を目指しています。近年では、デマンドサイドのエネルギーマネジメントによる省CO2・省エネルギーの推進を図るとともに、電気・冷温水を供給するエネルギーセンターを構築し、特定エリア内におけるエネルギーマネジメントを行うCommunity Energy Management System (CEMS)を導入・運用するなど、エネルギーに関わる広範なサービス事業を展開しています。 総合エネルギーサービス事業の展開にあたり、業務用分野においては、お客さまのガスや電気の使用量実績を把握するだけではなく、ボイラーや空調機器、暖房機器等、お客さまが実際に機器をどのように使い、室内環境がどのように変化したのかを把握するデマンドサイド(需要家側)のデータ収集が求められていました。 業務用機器を含むエネルギーシステムは、機器単体の性能・効率向上だけではなく、エネルギーシステム全体として、需要家側の最適利用や省エネを図る必要があり、こうした運用は需要家側に任されております。しかし、積雪寒冷地の北海道では、季節によってエネルギー負荷が大きく変化するため、需要家側で最適な運用ができていないケースが散見されていました。 お客さまの最適運用・省エネを支援するため、機器データや室内環境データを把握することは重要な取り組みと位置付けておりましたが、測定した様々なデータをクラウドにどのように集め、蓄積し、可視化するかに関しては、知見に乏しく、多くの課題がありました。 アーキテクチャの検討 この件に限らず、データ分析や機械学習のワークロードを進めるうえでは、過去の大量のデータが必要となる場合が多くあります。一方で、これからIoT化を進めるケースでは、過去のデータが存在しないケースがほとんどです。さらに、エネルギーサービスなどで分析に使える実データを集めるためには、季節変化等も考慮する必要があるため、データ収集には長い期間が必要となります。 今回のケースにおいても、最初に着手するべき事項として、データを集めて蓄積する部分に焦点を絞り、データ収集・分析基盤のアーキテクチャ設計と構築をすすめました。設計議論における観点は以下のようなところです。 保守・運用にかかる作業を最小化したい。コストを抑え、短期間でPoCを完了させ、次のステップへ進みたい。 蓄積したデータに対して、今後様々な活用が可能な状態にしたい。例えば機械学習やBIツール等を使う可能性を視野に入れる。(具体的な活用方法はこれから考えたい。) デバイスの設置場所は、Wi-Fiなどのインターネット環境が無い場合を想定している。 これらのポイントを考慮したうえで、以下のようなアーキテクチャを設計しました。 ハードウェア・通信環境 このPoCでは、上述のとおり、データの蓄積を主眼としているため、新たなハードウェアの開発は行わず、市販のデバイスを組み合わせてハードウェア環境を構築しています。クラウドへの通信、およびエンドポイントにはSORACOMを用い、そこからAWS IoT Coreへすべてのデータを送信しています。1つのゲートウェイに接続されている複数のセンサー情報が、1つのJSONドキュメント形式でまとめられており、それが一定時間間隔で送られます。 SORACOMからIoT Coreへのデータ送信では、クラウドリソースアダプタであるSORACOM Funnelを利用しています。ゲートウェイからのデータは、SORACOM Funnelを介して、アクセスキー認証によるHTTPS通信によりIoT Coreへ送信しています。本構成では、SORACOM Platform 上で認証情報を管理することで、物理的なハッキング対策を講じるとともに、ゲートウェイからSORACOM Platformまでは閉域網で通信することで、セキュアなIoTシステムを構築しています。 IoT Coreに送られたデータは、IoT Coreのルールエンジンによって、AWS IoT Analyticsへと送信されます。ルールの設定は数クリックで可能であり、SORACOMからIoT Coreへ送られるすべてのメッセージをIoT Analyticsに送る設定を行いました。今回のPoCで作成したルールは1つのみですが、ルールを増やすことによって、例えば、IoTデバイスから届いたデータの値が一定値を越えた場合にE-mailなどでアラートを通知したり、アプリケーション用のデータベースを更新するなど、柔軟に拡張することが可能です。 さて、IoT Analyticsにデータが届くと、IoT Analyticsは内部で、送られてきたJSONをパースし後段の分析で利用可能な形式への変換を行います。ここでは、IoT Analyticsのパイプラインに Lambda Activity を追加し、データが一定量もしくは一定期間蓄積されたら自動的にLambdaを呼び出す設定を行いました。Lambda関数の中で、JSONオブジェクトから必要なデータのみを抽出し、1つのオブジェクトに含まれる複数のセンサーデータの情報を配列に変換し、データストアに保存するようにしました。 分析 IoT Analyticsでは、データソースおよびデータセットの保存先としてS3を選択しています。S3を選択することにより、将来的にAthenaやGlueなどの分析系のサービスや外部ツールを利用し、より高度な分析も行うことが可能になります。 […]

Read More

産業用IoT – コンディションベースのモニタリングから品質予測まで、AWS IoTサービスで工場のデジタル化を実現

産業用IoT(IIoT)は、産業用機器やオートメーションネットワーク(通常はOT、オペレーションズテクノロジーと呼ばれる)と情報技術(IT)の間のギャップを埋めるものです。ITでは、機械学習、クラウド、モバイル、エッジコンピューティングなどの新技術の利用が一般的になりつつあります。IIoTは、機械、クラウドコンピューティング、分析、人を結びつけ、産業プロセスのパフォーマンス、生産性、効率性を向上させます。これにより、顧客は品質予測とメンテナンスのためにIIoTアプリケーションを利用したり、どこからでも操作を遠隔監視することができます。 しかし、IIoTの価値を実現することは容易ではなく、下記のような製造業の方々を妨げる3つの要素があります。 データの収集頻度が低すぎる データにアクセスするのが難しい 個々に収集したデータをつなぎ合わせることができない この投稿では、産業企業が品質予測を使用して機器設定の調整をしたり様々な原材料を調整したり、さらには追加の労働者へのトレーニングなどを行うことによって工場の生産品質を向上していく方法について探っていきます。 AWS IoT サービスを活用することで、鉱業、エネルギー・公益事業、製造業、精密農業、石油・ガスなど、さまざまな業種の産業企業は、運用データに基づいて推論を行い、パフォーマンス、生産性、効率性を向上させることができます。 業界の現状と課題 鉱業、エネルギー、製造業、農業、石油・ガス、またはその他の産業市場セグメントのいずれであっても、過去10年、20年、あるいは30年に渡って、十分に機能してきたレガシー機器を持っています。多くの産業企業は、産業用 PC(IPC)、プログラマブルロジックコントローラ(PLC)、またはリアルタイム分散制御ネットワーク(fieldbuses)を接続した大規模分散制御システム(DCS)、および監視制御・データ収集(SCADA)システムなどの運用技術に多額の投資を行ってきました。これらの運用は、数十年続くように設計、導入され深く定着しており、置き換えることは非常に困難です。 次の図は、ISA-95 産業用エッジアーキテクチャと上記の要素がどのように関連しているかを示しています。 図1 – ISA 95モデルによる自動化ピラミッド(出典:researchgate.net) IoTや機械学習、コンピュータビジョンのような新しい技術の恩恵を受けようとすると、IoTアプリケーション用に設計されていない既存の機器やシステムを適応させなければなりません。 あらゆるIIoTアプリケーションの最初の課題は、様々な製造現場の様々なデバイス(センサー、アクチュエーター、電気モーター)からデータを収集するためにレガシー機器を接続することです。多くの場合、異なる産業プロトコルを接続したり、装置を新たに追加することで新しいテクノロジーを古いシステムに追加し、測定やリモートコントロール、接続を行なっていきます。 2番目に、そして最も重要な課題は接続性と一緒に考える必要があるセキュリティです。デバイスとそのデータの安全性を確保しなければなりません。生産環境で機器やシステムに障害が発生すると、コストのかかるダウンタイムが発生し、ビジネスに影響が出る可能性があります。産業用の接続デバイスがクラウド接続されていない場合でも、最高のパフォーマンスで動作するようにしなければなりません。データ収集プロセスは、デバイスの操作を妨害してはならず、遠隔操作や更新操作は、許可されたオペレーターのみから安全な方法で行われるようにしなければなりません。 データの安全性を確保したら、洞察力を得るための3番目の課題がやってきます。データは工場の異なる「フロア」(ISA-95 アーキテクチャの異なるレベル)に固定されます。すべての生データから洞察を得るためには、これらのデータが異なるデバイスや製造現場、時系列、フィールドバス、システム、またはデータベースからのものであるかどうかに関わらず、データを接続することが重要です。 どのように動作するか AWS IoTは、企業がビジネス目標を達成するための課題を克服するのに役立ちます。 まず、AWS IoTを利用することで、小型のマイクロコントローラからより強力なゲートウェイデバイスまで、あらゆるタイプのデバイスを簡単に接続、管理、更新できます。既存のハードウェアをオーバーホールしたり交換したりすることなく、シンプルなセンサーを導入してプロセスを監視したり、主要なパフォーマンス指標を追跡したりすることで、プログラマブルロジックコントローラ(PLC)や監視制御・データ収集(SCADA)システムなど、製造現場にある既存のレガシー機器を統合できます。 2番目に、AWS IoTには組み込みのデバイス認証と認証機能を提供して、IoTデータとデバイスを保護し続けます。また、デバイスに関連するセキュリティポリシーを継続的に監査したり、デバイスの異常な動作を監視したり、何かおかしいと思ったらアラートを受信したりすることができます。また、デバイスの電源を切ったり、セキュリティ修正プログラムを適用するなどの是正措置を取ることもできます。 3番目に、AWS IoTは、接続されたデバイスが断続的なインターネット接続で動作できるようにし、予期しないダウンタイムのリスクを軽減します。インターネット接続が可能になるまでも、機械学習モデルやソフトウェアコードを実行したり、データをローカルに保存したりすることができます。 AWS IoTは「プラグアンドプレイ」機能を提供しているため、IoTアプリケーションを数千から数百万台のデバイスに拡張することができます。AWS IoTを利用することで、デバイスのインベントリの整理、デバイスの監視、デバイスソフトウェアのOTA(Over-the-Air)アップデートを含む様々な場所でのデバイスのリモート管理が可能になります。 次の図では、様々なAWS IoTサービスがどのように連携してIIoTを実現しているかを示しています。 図2 – AWS IoT産業用リファレンスアーキテクチャ デバイスが安全に設置されると、AWS IoTはIoTデータの分析を簡単に実行できます。AWS IoTは、IoTデータの収集、処理、分析を迅速かつ簡単に行うことができるため、運用に関する洞察を得ることができます。AWS IoTはAmazon SageMakerと統合されているため、産業用IoTデータに対して機械学習モデルを構築でき、これらの機械学習モデルは、クラウド上で実行したり、デバイスのローカルにデプロイできます。Amazon QuickSightを利用することで、データを可視化して探索し、チーム間で洞察を共有できます。 次のセクションでは、さまざまなAWS IoTサービスが最も重要な産業用ユースケースをサポートするためにどのように価値を提供するかについて詳しく説明します。 アセットの状態監視 予知保全 品質予測 産業用ユースケースとアーキテクチャのウォークスルー アセットの状態監視 アセットの状態監視では、機械や設備の状態を取得することで、現場や工場のアセットがどのように機能しているかを把握することができます。一般的に、温度、振動、エラーコードなどのデータは、機器の使用状況が最適かどうかを示しますが、技術者が機械を物理的に検査する必要があるため、手動で取得することは困難です。AWS […]

Read More

AWS IoT Analytics 東京リージョン 一般提供開始のおしらせ

みなさん、こんにちは。アマゾン ウェブ サービス、プロダクトマーケティング エバンジェリストの亀田です。 AWS IoT Analyticsが東京リージョンで一般提供開始となりましたのでお知らせいたします。 AWS IoT Analytics は、膨大な量の IoT データの高度な分析を簡単に実行および操作できるよう設計された、完全マネージド型サービスであり、これを用いることでIoT アプリケーションや 機械学習のユースケースで最適かつ正確な判断を下すために、IoT データを分析してインサイトを簡単に得ることができます。   特徴 完全マネージド型時系列データストア: ペタバイトまで格納可能な完全マネージド型の時系列データストアに無期限にデータを保存することができ、デバイスからのデータを時系列で保存することができます。 データ変換: パイプラインという機能を用いることで、データストアにデータを保存する前に、例えば大きな誤差やメッセージの破損、誤認識等による情報をクリーンアップすることができます。 組み込みの SQL クエリエンジン: アドホッククエリまたはスケジュールされたクエリを実行することでデータを分析するか、さらに複雑な分析と機械学習推論を実行することができます。 Jupyter ノートブックや独自のツール等との連携: 作成されたコンテナにパッケージ化されたカスタム分析の実行を自動化して、これを定期的に実行することができます。 データ収集 AWS IoT Core、Amazon S3、Amazon Kinesis、またはその他のソースから AWS IoT Analytics にデータを送信することができます。MQTT トピックフィルタを用いてメッセージの処理や変換なども可能です。 処理 AWS Lambda 関数を定義して欠落データを検出したときにトリガーできるため、コードを実行して欠落を推定し、これを埋めることや、最大/最小フィルタとパーセンタイルのしきい値を定義して、データ上の異常値を削除すること等ができます。そして、定義した数学的または条件付きロジックを使用してメッセージを変換できるため、あらかじめ定めたルールに基づき値を変更することが可能で、摂氏から華氏への変換のような一般的な計算を実行できます。 また、外部のデータソースと連携し、データの内容を強化させることも可能です。例えば温度に対して、天気予報などの外部データソースを使用してデータを強化させるなどです。 保存 ペタバイトのデータを格納することが可能な時系列データストアがIoT Analyticsの一部として提供されます。そして、アクセス権限の管理、データ保持ポリシーの実装、外部アクセスポイントへのデータのエクスポート等の設定も可能です。 分析 SQL クエリエンジンが組み込まれているため、アドホック SQL クエリまたはスケジュールされた SQL クエリの実行を行うことができます。そして、時系列分析に対応しており、、時間の経過とともにデバイスのパフォーマンスを分析したり、使用方法や使用場所を把握するだけでなく、デバイスデータを継続的にモニタリングしてメンテナンスの問題を予測したり、センサーをモニタリングして環境条件を予測して対応することが可能となります。さらた時系列データを用いて差分データのみの分析などもできるようになります。 また、統計分析やAmazon […]

Read More