Artificial Intelligence

Category: Intermediate (200)

Cohere Embed multimodal embeddings model is now available on Amazon SageMaker JumpStart

The Cohere Embed multimodal embeddings model is now generally available on Amazon SageMaker JumpStart. This model is the newest Cohere Embed 3 model, which is now multimodal and capable of generating embeddings from both text and images, enabling enterprises to unlock real value from their vast amounts of data that exist in image form. In this post, we discuss the benefits and capabilities of this new model with some examples.

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM), making it easier to securely share and discover machine learning (ML) models across your AWS accounts. In this post, we will show you how to use this new cross-account model sharing feature to build your own centralized model governance capability, which is often needed for centralized model approval, deployment, auditing, and monitoring workflows.

Improve governance of models with Amazon SageMaker unified Model Cards and Model Registry

You can now register machine learning (ML) models in Amazon SageMaker Model Registry with Amazon SageMaker Model Cards, making it straightforward to manage governance information for specific model versions directly in SageMaker Model Registry in just a few clicks. In this post, we discuss a new feature that supports the integration of model cards with the model registry. We discuss the solution architecture and best practices for managing model cards with a registered model version, and walk through how to set up, operationalize, and govern your models using the integration in the model registry.

Build and deploy a UI for your generative AI applications with AWS and Python

AWS provides a powerful set of tools and services that simplify the process of building and deploying generative AI applications, even for those with limited experience in frontend and backend development. In this post, we explore a practical solution that uses Streamlit, a Python library for building interactive data applications, and AWS services like Amazon Elastic Container Service (Amazon ECS), Amazon Cognito, and the AWS Cloud Development Kit (AWS CDK) to create a user-friendly generative AI application with authentication and deployment.

Unearth insights from audio transcripts generated by Amazon Transcribe using Amazon Bedrock

In this post, we examine how to create business value through speech analytics with some examples focused on the following: 1) automatically summarizing, categorizing, and analyzing marketing content such as podcasts, recorded interviews, or videos, and creating new marketing materials based on those assets, 2) automatically extracting key points, summaries, and sentiment from a recorded meeting (such as an earnings call), and 3) transcribing and analyzing contact center calls to improve customer experience.

Best practices and lessons for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock

Best practices and lessons for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock

In this post, we explore the best practices and lessons learned for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock. We discuss the important components of fine-tuning, including use case definition, data preparation, model customization, and performance evaluation.

Unlock organizational wisdom using voice-driven knowledge capture with Amazon Transcribe and Amazon Bedrock

This post introduces an innovative voice-based application workflow that harnesses the power of Amazon Bedrock, Amazon Transcribe, and React to systematically capture and document institutional knowledge through voice recordings from experienced staff members. Our solution uses Amazon Transcribe for real-time speech-to-text conversion, enabling accurate and immediate documentation of spoken knowledge. We then use generative AI, powered by Amazon Bedrock, to analyze and summarize the transcribed content, extracting key insights and generating comprehensive documentation.

Achieve multi-Region resiliency for your conversational AI chatbots with Amazon Lex

Global Resiliency is a new Amazon Lex capability that enables near real-time replication of your Amazon Lex V2 bots in a second AWS Region. When you activate this feature, all resources, versions, and aliases associated after activation will be synchronized across the chosen Regions. With Global Resiliency, the replicated bot resources and aliases in the […]