Artificial Intelligence

Category: *Post Types

Fine-tune OpenAI GPT-OSS models using Amazon SageMaker HyperPod recipes

This post is the second part of the GPT-OSS series focusing on model customization with Amazon SageMaker AI. In Part 1, we demonstrated fine-tuning GPT-OSS models using open source Hugging Face libraries with SageMaker training jobs, which supports distributed multi-GPU and multi-node configurations, so you can spin up high-performance clusters on demand. In this post, […]

Inline code nodes now supported in Amazon Bedrock Flows in public preview

We are excited to announce the public preview of support for inline code nodes in Amazon Bedrock Flows. With this powerful new capability, you can write Python scripts directly within your workflow, alleviating the need for separate AWS Lambda functions for simple logic. This feature streamlines preprocessing and postprocessing tasks (like data normalization and response formatting), simplifying generative AI application development and making it more accessible across organizations.

Accelerate enterprise AI implementations with Amazon Q Business

Amazon Q Business offers AWS customers a scalable and comprehensive solution for enhancing business processes across their organization. By carefully evaluating your use cases, following implementation best practices, and using the architectural guidance provided in this post, you can deploy Amazon Q Business to transform your enterprise productivity. The key to success lies in starting small, proving value quickly, and scaling systematically across your organization.

Speed up delivery of ML workloads using Code Editor in Amazon SageMaker Unified Studio

In this post, we walk through how you can use the new Code Editor and multiple spaces support in SageMaker Unified Studio. The sample solution shows how to develop an ML pipeline that automates the typical end-to-end ML activities to build, train, evaluate, and (optionally) deploy an ML model.

process_flow

How Infosys Topaz leverages Amazon Bedrock to transform technical help desk operations

In this blog, we examine the use case of a large energy supplier whose technical help desk agents answer customer calls and support field agents. We use Amazon Bedrock along with capabilities from Infosys Topaz™ to build a generative AI application that can reduce call handling times, automate tasks, and improve the overall quality of technical support.

Tyson Foods elevates customer search experience with an AI-powered conversational assistant

In this post, we explore how Tyson Foods collaborated with the AWS Generative AI Innovation Center to revolutionize their customer interaction through an intuitive AI assistant integrated into their website. The AI assistant was built using Amazon Bedrock,

architecture diagram showing trusted identity propagation between multiple aws services

Simplify access control and auditing for Amazon SageMaker Studio using trusted identity propagation

In this post, we explore how to enable and use trusted identity propagation in Amazon SageMaker Studio, which allows organizations to simplify access management by granting permissions to existing AWS IAM Identity Center identities. The solution demonstrates how to implement fine-grained access controls based on a physical user’s identity, maintain detailed audit logs across supported AWS services, and support long-running user background sessions for training jobs.

Benchmarking document information localization with Amazon Nova

This post demonstrates how to use foundation models (FMs) in Amazon Bedrock, specifically Amazon Nova Pro, to achieve high-accuracy document field localization while dramatically simplifying implementation. We show how these models can precisely locate and interpret document fields with minimal frontend effort, reducing processing errors and manual intervention.

Architecture Diagram

How Infosys built a generative AI solution to process oil and gas drilling data with Amazon Bedrock

We built an advanced RAG solution using Amazon Bedrock leveraging Infosys Topaz™ AI capabilities, tailored for the oil and gas sector. This solution excels in handling multimodal data sources, seamlessly processing text, diagrams, and numerical data while maintaining context and relationships between different data elements. In this post, we provide insights on the solution and walk you through different approaches and architecture patterns explored, like different chunking, multi-vector retrieval, and hybrid search during the development.

Streamline employee training with an intelligent chatbot powered by Amazon Q Business

In this post, we explore how to design and implement custom plugins for Amazon Q Business to create an intelligent chatbot that streamlines employee training by retrieving answers from training materials. The solution implements secure API access using Amazon Cognito for user authentication and authorization, processes multiple document formats, and includes features like RAG-enhanced responses and email escalation capabilities through custom plugins.