Amazon Web Services ブログ

Category: Announcements

Amazon SageMaker JumpStart で事前構築済みモデルと機械学習ソリューションへのアクセスを簡素化する

本日、Amazon SageMaker の新機能である Amazon SageMaker JumpStart の提供を開始したことを発表します。人気の高いモデルのコレクション (別名「モデルズー」) および一般的なユースケースを解決するエンドツーエンドのソリューションに、ワンクリックでアクセスして機械学習ワークフローを高速化することができます。 近年、機械学習はビジネスプロセスの改善と自動化に役立つ技術であることが証明されています。実際、過去データでトレーニングされたモデルは、金融サービス、小売、製造、通信、ライフサイエンスといった幅広い業界において結果を高精度に予測できます。しかし、これらのモデルの使用には、データセットの準備、アルゴリズムの選択、モデルのトレーニング、精度の最適化、本番稼働環境へのデプロイ、パフォーマンスの経時的モニタリングといった、一部の科学者やデベロッパーだけが有しているスキルと経験が必要になります。 モデルの構築プロセスを簡素化するために、機械学習コミュニティは、モデルズーと呼ばれる、人気の高いオープンソースライブラリによるモデルのコレクションを作成しました。モデルズーは多くの場合、リファレンスデータセットで事前トレーニングされています。例えば、TensorFlow Hub や PyTorch Hub では、デベロッパーは多数のモデルをダウンロードして、コンピュータビジョンや自然言語処理などのアプリケーションに統合することができます。 モデルのダウンロードは第一歩にすぎません。デベロッパーはその後、TensorFlow Serving および TorchServe モデルサーバーといったさまざまなツール、または独自のカスタムコードを使用してモデルをデプロイし、評価とテストを行う必要があります。モデルを実行したら、デベロッパーは受信データの適切な形式を把握する必要があります。これは以前からの悩みの種です。毎回ここで頭を抱えているのは私だけではないでしょう。 もちろん、完全な機械学習アプリケーションには通常、多くの不確定要素があります。データを事前処理して、バックエンドから取得した追加データでエンリッチメントを行い、モデルに投入する必要があります。予測は多くの場合、後処理され、さらなる分析や視覚化を行うために保存されます。モデルズーは有用ですが、役に立つのはモデリング段階でのみです。完全な機械学習ソリューションが提供できるようになるまでにデベロッパーが行うべき作業は、まだたくさんあります。 そのため、機械学習エキスパートには、プロジェクトのバックログが殺到します。一方で経験の少ないプラクティショナーは、開始するまでに苦労します。これらの障壁は大変苛立たしいものです。お客様からもこの問題への対処を求められました。 Amazon SageMaker JumpStart のご紹介 Amazon SageMaker JumpStart は、機械学習用の完全な統合開発環境 (IDE) である Amazon SageMaker Studio に統合されているため、モデルやソリューションなどを直感的に見つけることができます。ローンチ時の SageMaker JumpStart には、以下が含まていれます。 不正検出や予知保全といった、一般的な機械学習ユースケースに対応する 15 以上のエンドツーエンドソリューション コンピュータビジョン (画像分類、物体検出) および自然言語処理 (文章分類、質問応答) に対応する、TensorFlow Hub および PyTorch Hub で公開されている 150 以上のモデル […]

Read More

AWS Audit Manager で監査の準備を簡素化

タイムリーにエビデンスを収集して監査をサポートしたいとお考えではないでしょうか。しかしこれは手作業のためエラーが発生しやすく、場合によっては分散プロセスとなり、非常に困難な課題と化すおそれがあります。ビジネスがコンプライアンス要件の対象となる場合、監査の準備によって生産性が大幅に低下し、結果的に中断を余儀なくされる場合もあります。また、オンプレミスのレガシーシステム用に設計された従来の監査プラクティスをクラウドインフラストラクチャに適用する際に、問題が発生することも考えられます。 一般データ保護規則 (GDPR)、医療保険の携行と責任に関する法律 (HIPAA)、ペイメントカード業界データセキュリティスタンダード (PCI DSS) といった、進化する複雑な規制やコンプライアンス標準に対応するには、エビデンスを収集、検証、統合する必要があります。 また、AWS 使用量が、進化するコンプライアンス制御の要件にどのようにマッピングされているかを、常に再評価し続ける必要があります。要件を満たすには、データの暗号化がアクティブになっていたことを示す必要があり、さらに、サーバー設定の変更を示すログファイル、アプリケーションの高可用性を示す図、必要なトレーニングを完了したことを示すトランスクリプト、ソフトウェア使用量がライセンスの規定を超えていないことを示すスプレッドシートなども必要になる場合があります。この作業は、時には数十人のスタッフやコンサルタントを巻き込んで、数週間続きます。 AWS Audit Manager は、監査の準備に役立つフルマネージド型サービスです。一般的な業界標準および規制に適合する事前構築済みフレームワークを提供し、エビデンスの継続的な収集を自動化できます。今すぐに利用可能です。AWS リソースの使用に関するエビデンスの継続的かつ自動的な収集によって、リスク評価や規制および業界標準へのコンプライアンスを簡素化できます。また、監査に備えた体制を継続的に維持できるようになり、より迅速で中断の少ない準備プロセスを実施できます。 カスタマイズ可能な組み込みのフレームワークにより、クラウドリソースの使用状況をさまざまなコンプライアンス標準の制御にマッピングし、監査に適した用語を使用して、エビデンスを監査に備えたイミュータブルな評価レポートに変換できます。また、オンプレミスのインフラストラクチャの詳細や、ビジネス継続性計画、トレーニングのトランスクリプト、ポリシー文書などの追加のエビデンスを検索、フィルタリング、アップロードして、最終的な評価に含めることも可能です。 通常、監査の準備には複数のチームが関与します。そこで、委任ワークフロー機能を使用すれば、対象分野のエキスパートに管理を割り当ててレビューを行わせることが可能になります。例えば、ネットワークセキュリティに関するエビデンスのレビューを、ネットワークセキュリティエンジニアに委任できます。 最終版評価レポートには、要約統計量と、関連するコンプライアンスフレームワークの正確な構造に従って整理されたすべてのエビデンスファイルが入ったフォルダが含まれます。エビデンスが収集されて単一の場所に整理されるとすぐにレビュー可能になるため、監査チームはより簡単にエビデンスを検証し、質問に回答し、修復計画を追加できるようになります。 Audit Manager の開始方法 まず、新規の評価を作成して設定しましょう。Audit Manager コンソールのホームページで [Launch AWS Audit Manager (AWS Audit Manager を起動)] をクリックすると、[Assessments (評価)] リストに移動します (コンソールのホーム左側のナビゲーションツールバーからもアクセス可能)。そこで [Create assessment (評価を作成)] をクリックして、新規の評価の設定ウィザードを開始します。まず、評価に名前を付け、オプションで説明を入力します。次に、評価に関連付けられたレポートを保存する Amazon Simple Storage Service (S3) バケットを指定します。 次に、評価のフレームワークを選択します。さまざまな事前構築済みフレームワークや、自分で作成したカスタムフレームワークから選択することができます。カスタムフレームワークは一から作成することもできますが、既存のフレームワークに基づいて作成することもできます。ここでは、事前構済みの PCI DSS フレームワークを使用します。 [Next (次へ)] をクリックすると、評価の対象とする AWS アカウントを選択できます (Audit […]

Read More

Amazon CodeGuru の新機能 – Python サポート、Security Detector、および Memory Profiling

Amazon CodeGuru は、コードの品質を向上させるデベロッパーツールであり、次の 2 つの主要コンポーネントで構成されています。 CodeGuru Reviewer は、プログラム分析と機械学習を使用して、コード内で見つけにくい潜在的な欠陥を検出し、改善のための提案を提供します。 CodeGuru Profiler は、ライブアプリケーションからランタイムパフォーマンスデータを収集し、アプリケーションのパフォーマンスを微調整するのに役立つ視覚化と推奨事項を提供します。 本日は、3 つの新機能を発表いたします。 CodeGuru Reviewer および CodeGuru Profiler 用の Python のサポート (プレビュー) – CodeGuru を使用して Python で記述されたアプリケーションを改善できるようになりました。このリリース以前には、CodeGuru Reviewer は Java コードを分析でき、CodeGuru Profiler は Java 仮想マシン (JVM) で実行されるアプリケーションをサポートしていました。 CodeGuru Reviewer 用の Security Detector – CodeGuru Reviewer 用の新しい検出機能セットで、セキュリティの脆弱性を特定し、Java コード内のセキュリティのベストプラクティスをチェックします。 CodeGuru Profiler 用の Memory Profiling – 時間の経過に伴うオブジェクトタイプごとのメモリ保持の新しいビジュアライゼーションです。これにより、メモリリークを検出し、アプリケーションによるメモリの使用を最適化することが容易になります。 これらの機能をもっと詳しく見てみましょう。 […]

Read More

Amazon EKS が、マネージド型ノードグループでの EC2 スポットインスタンスのプロビジョニングと管理をサポート

この記事は、Amazon EKS now supports provisioning and managing EC2 Spot Instances in managed node groups を翻訳したものです。 Amazon Elastic Kubernetes Service (Amazon EKS) を使用すると、アップストリームのKubernetes を利用した、セキュアで可用性の高いKubernetes クラスターを AWS で簡単に実行できます。2019 年にマネージド型ノードグループがサポートされ、EKS はクラスターの基盤となる EC2 インスタンス(ワーカーノード)をプロビジョニングし、管理できるようになりました。これにより、新しいAMI がリリースされたときにノードをローリングアップデートしたり、Kubernetes バージョンを更新したりといった、運用のための作業が非常に簡単になりました。EKS のマネージド型ノードグループについて詳しく知るには、アナウンス時のブログ及びドキュメントをご参照ください。 AWS public containers roadmap にお客様より寄せられたご要望を受けて、EKS はマネージド型ノードグループをさらに使いやすくするために機能を強化してきました。例えば、カスタムAMI の指定、起動テンプレートの利用といった機能拡張を実施しました。同様に、お客様の関心が高かった機能の一つが、マネージド型ノードグループでスポットインスタンスを起動、管理できるようにするというものです。 Amazon EC2 スポットインスタンスを利用すると、EC2 が予備として確保しているキャパシティーを利用して、大幅な割引価格で EC2 インスタンスを実行できます。 EC2 がこの予備キャパシティーを必要とする際には、スポットインスタンスは 2 分前に通知を受けて中断されることがあります。スポットインスタンスを Kubernetes のワーカーノードとして使用するというのは様々な種類のワークロードで非常によく使われるパターンです。ステートレスなAPI エンドポイントやバッチ処理、ML のトレーニング、Apache Spark […]

Read More
EKS Managed Addons

Amazon EKS add-ons のご紹介: Kubernetes 運用ソフトウェアのライフサイクル管理

この記事は、Introducing Amazon EKS add-ons: lifecycle management for Kubernetes operational software を翻訳したものです。 当初から、Amazon Elastic Kubernetes Service (Amazon EKS) の目標は、Kubernetes クラスター管理の専門家ではなくても AWS 上で Kubernetes を簡単に実行できるフルマネージドサービスを構築することでした。Amazon EKS が最初にローンチしたとき、それはフルマネージドな Kubernetes コントロールプレーンを意味していました。やがて、お客様からはクラスターに必要なコンピュートパワーの管理を支援してほしいという要望が出てきました。1 年前には、EKS Managed Node Groups と AWS Fargate のサポートを導入しました。 お客様からはさらなる改善のご要望をいただいていました。本日は、フルマネージドな Kubernetes クラスターを提供するための主要なステップである新機能、EKS add-ons について紹介したいと思います。EKS add-ons を使用すると、Kubernetes アプリケーションをサポートするための重要な機能を提供する運用ソフトウェアまたはアドオンを構成、デプロイ、更新することができます。これらのアドオンには、Amazon VPC CNI のようなクラスタネットワーキングのための重要なツールのほか、可観測性、管理、スケーリング、セキュリティのための運用ソフトウェアが含まれます。 本日より Amazon VPC CNI plugin から、Amazon EKS では、新しいクラスターを作成するとき、またはクラスターの実行後いつでもアドオンを有効にできるようになりました。EKS は、クラスター上でアドオンソフトウェアを起動し、1 […]

Read More

AWS Marketplace がプロフェッショナルサービスの提供を開始しました

AWS Marketplace では、お客様がサードパーティーソフトウェアだけでなく、計画、デプロイメント、およびサポートを含めたこれらの製品のライフサイクル全体をサポートするために必要なプロフェッショナルサービスも検索して購入することができるようになりました。これにより、プロバイダーとの関係と調達プロセスの管理といったタスクを含めたソフトウェアサプライチェーンがシンプル化されるとともに、請求と請求書も 1 か所に統合されます。 お客様はこれまで、AWS Marketplace を使用してソフトウェアを購入した後、プロフェッショナルサービスの契約に個別のプロセスを使用していました。多くのお客様には、サードパーティーソフトウェアの購入時にプレミアムサポート、実装、またはトレーニングなどの追加のプロフェッショナルサービスが必要になります。異なる調達プロセスをサポートするための追加の作業は、お客様のプロジェクトのスケジュールに影響を及ぼし、組織をより一層複雑にしてしまいます。 昨年、AWS は AWS IQ を発表しました。これは、AWS のプロジェクト作業のために、お客様が AWS 認定のサードパーティーエキスパートを活用することを支援するサービスです。今年は、それをさらに一歩前進させて、お客様が現在 AWS Marketplace から購入するすべてのサードパーティーソフトウェアソリューションに対するプロフェッショナルサービスを見つけるお手伝いをします。 購入者 購入者は、AWS Marketplace を使用して、複数の信頼できる出品者からのプロフェッショナルサービスを見つけ出し、ソフトウェアとサービスからの請求書と支払いをまとめて管理して調達時間を短縮し、このプロセスを数か月から数日に短縮することができるようになります。 この新しい機能では、購入者が、コンサルティングパートナー、マネージドサービスプロバイダー、および独立系ソフトウェアベンダーからの評価、実装、プレミアムサポート、マネージドサービス、およびトレーニングなどのさまざまなプロフェッショナルサービスから選択することが可能になります。 プロフェッショナルサービスの検索と購入を開始するには、まず適切なサービスを見つける必要があります。特定のソフトウェアに関連付けられたプロフェッショナルサービスをお探しの場合は、AWS Marketplace の検索ツールを使用してソフトウェアを検索でき、関連するプロフェッショナルサービスが検索結果に表示されます。Delivery Methods (提供方法) を使用して結果をフィルタリングし、結果をプロフェッショナルサービスに絞り込みます。 お探しのサービスを見つけたら、サービスの詳細ページにアクセスして、サービスの詳細情報を確認することができます。そのサービスを購入する場合は、[Continue] をクリックしてください。 クリックすると、Request service (サービスのリクエスト) フォームが表示され、これを使って出品者に連絡し、サービスをリクエストすることができます。出品者が通知を受け取ると、成果物、マイルストーン、料金、支払いスケジュール、およびサービス条件などの業務範囲について合意するために、お客様に連絡することができます。 具体的な契約詳細のすべてについて出品者と合意すると、出品者がプライベートオファーを送信します。すると、オファーページには、サービスのリクエストフォームではなく、プライベートオファーの詳細が表示されるようになります。この料金、支払スケジュール、および契約条件を確認して、契約を作成できます。 AWS Marketplace でプライベートオファーを確認して承諾すると、サービスのサブスクリプションが開始されます。また、AWS Marketplace からの請求書も送信され、購入者のマネジメントコンソールでサブスクリプションを追跡できます。サービス購入の明細は AWS の請求書に記載されるので、支払いとコスト管理がシンプルになります。 出品者 この AWS Marketplace の新機能は、出品者がそのプロフェッショナルサービスを出品することによってビジネスを成長させ、新規顧客を獲得することを可能にします。プロフェッショナルサービスは、ソフトウェアとは別の料金、支払いスケジュール、およびサービス条件を使用して、AWS Marketplace に個別の製品として出品、または既存のソフトウェア製品とともに出品することができます。 AWS Marketplace では、見込み購入者に表示される、出品者としての情報のすべてが記載された出品者ページを作成します。 公開されたプロフェッショナルサービスは検索可能で、出品者のプロファイルに表示されます。お客様からは、出品した各サービスに対するリクエストを受け取ります。サービス契約の詳細についてお客様と合意したら、お客様にプライベートオファーを送信します。 […]

Read More

新機能 – AWS Well-Architected Tool の SaaS レンズ

安全性、耐障害性、および効率性に優れた高パフォーマンスソリューションの AWS での構築を支援するため、AWS は 2015 年に AWS Well-Architected Framework を一般公開しました。これは、1 部のホワイトペーパーとしてスタートしましたが、ドメイン固有のレンズ、ハンズオンラボ、およびワークロードを定期的に評価し、高リスク問題を識別して、改善点を記録するメカニズムを提供する AWS Well-Architected Tool (AWS マネジメントコンソールから無料でご利用いただけます) に拡大されました。 ワークロード固有のアドバイスをより多く提供するため、2017 年には「レンズ」の概念でフレームワークを拡張し、一般的な見解の枠を超えて、特定のテクノロジー分野に参入しました。現在、Software-as-a-Service (SaaS) ソリューションの構築を促進するために、AWS SaaS Factory チームが新しい AWS Well-Architected SaaS レンズ を構築する取り組みを先導しています。 SaaS は、ソフトウェアがプロバイダーによって一元的に管理およびホストされ、サブスクリプションベースで顧客に提供されるライセンス供与/デリバリーモデルです。このモデルの使用により、ソフトウェアプロバイダーは迅速に革新し、コストを最適化して、運用効率性を向上させることができます。それと同時に、顧客側もシンプル化された IT 管理、スピード、および使用分の料金だけを支払うというビジネスモデルのメリットを活かすことができます。 Well-Architected SaaS レンズは、SaaS ワークロード向けにカスタマイズされ、SaaS ワークロードの開発と運用に対するクリティカルシンキングを促進することを目的とした質問をツールに追加します。各質問にはベストプラクティスのリストがあり、各ベストプラクティスにはそれらを実施するために役立つ改善計画のリストがあります。何千人ものソフトウェアデベロッパーや AWS パートナーと連携してきた AWS SaaS Factory Program の AWS ソリューションアーキテクチャは、これらの Well-Architected パターンを AWS で SaaS アーキテクチャを構築して運用するための重要な要素として認識しています。 Well-Architected Tool […]

Read More

Amazon Lookout for Vision — 新しい ML サービスにより、製造の欠陥検出を簡素化

本日は、産業環境のお客様が、簡単かつコスト効率性に優れた方法で製造装置と機器の外観欠陥を検出するために役立つ新しい機械学習 (ML) サービス、Amazon Lookout for Vision をご紹介します。 これらの画像から欠陥がある回路基板を見つけられますか? 回路基板に詳しい人なら見つけられるかもしれませんが、私が欠陥を見つけるのには少し時間がかかってしまいました。適切な訓練を受け、十分に休息を取った人ならば、一連のオブジェクトから異常を上手く見つけることができますが、疲れていたり、この例での私のように適切な訓練を受けていなかったりすると、異常を見つけるのが遅くなり、ミスや食い違いが生じやすくなります。 多くの企業が異常の検出にマシンビジョンテクノロジーを使用しているのはこのためです。ただし、これらのテクノロジーは、制御された照明とカメラ視点で較正する必要があります。さらに、欠陥とされるものとされないものを定義するハードコードされたルールを指定しなければならないため、このテクノロジーは高度に特化されたものとなり、構築も複雑になります。 Lookout for Vision は、生産工程全体における製品欠陥の目視検査を自動化することによって、工業製品の品質向上と運用コストの削減を助ける新しい機械学習サービスです。Lookout for Vision では、ハードコードされたルールの代わりに深層学習モデルが使用され、カメラアングルの違い、照明、および運用環境に起因するその他の課題に対応します。Lookout for Vision により、慎重に制御された環境の必要性を減らすことができます。 Lookout for Vision を使用することで、製造された部品の損傷を検出し、欠落しているコンポーネントや部品を特定して、生産ラインにおける潜在的な工程関連の問題を発見することができます。 Lookout for Vision の使用開始方法 最初にお伝えしておきたいのは、Lookout for Vision は機械学習の専門家でなくても使用できるということです。Lookout for Vision は完全マネージド型サービスで、ユースケースとデータに合わせて最適化できる異常検出モデルが搭載されています。 Lookout for Vision を使用するには、いくつかのステップがあります。最初のステップは、データセットの準備です。これには、画像のデータセットの作成と画像のラベル付けが含まれます。次に、Lookout for Vision がこのデータセットを使用して、製品における異常の検出を学習する ML モデルを自動的にトレーニングします。最後のステップは、本番環境でのモデルの使用です。トレーニングしたモデルのパフォーマンスは、いつでも Lookout for Vision が提供するツールを使用して、継続的に評価し、改善することができます。 データの準備 モデルの作成を始めるには、まず一連の製品画像が必要になります。より良い結果を得るため、正常な製品 (欠陥なし) と異常な製品 (欠陥あり) の画像を含めます。トレーニングを始めるには、少なくとも 20 […]

Read More

新機能 – Amazon Lookout for Equipment でセンサーデータを分析し、機器の故障検出に役立てる

産業機器を運用する企業は、運用効率性の向上と、コンポーネントの故障による計画外ダウンタイムの回避に絶えず取り組んでいます。これらの企業は長年の間、機器の状態を監視し、リアルタイムのアラートを受け取るために、物理センサー (タグ)、データ接続、データストレージ、およびダッシュボードの構築に多額の投資を繰り返し行っています。主なデータ分析手法は、単一変数の閾値と物理学に基づくモデリングのアプローチであり、これらの手法は特定の故障タイプや稼働状態の検出には効果的ですが、各機器の多変量関係を導き出すことによって検出される重要な情報を見逃すことがよくあります。 機械学習の使用により、機器の履歴的なデータから学習するデータ駆動のモデルを提供できる、より強力なテクノロジーを利用できるようになりました。しかし、このような機械学習ソリューションの実装は、設備投資とエンジニアのトレーニングが原因で時間がかかり、コストも高額になります。 本日は、機器の異常な動作を検出する API ベースの機械学習 (ML) サービス、Amazon Lookout for Equipment をご紹介します。Lookout for Equipment を使用することによって、お客様は、モデルごとにセンサーやアクチュエータなどのコンポーネントからのデータタグを最大 300 個設定できる、産業機器から生成された履歴的な時系列データと過去のメンテナンスイベントを取り込むことができます。Lookout for Equipment は、可能な組み合わせを自動的にテストし、機械学習モデルを構築して機器の正常な動作を学習します。エンジニアに機械学習の専門知識は必要なく、クラウドでリアルタイム処理のためのモデルを簡単にデプロイできます。

Read More

Amazon Connect – よりスマートになり、サードパーティーツールとの統合が向上

2017 年の Amazon Connect のローンチ以来、何千社ものお客様がクラウドで独自にコンタクトセンターを構築しておられます。Amazon Connect は、非技術系のお客様によるインタラクションフローの設計、エージェントの管理、およびパフォーマンスメトリクスの追跡を容易にします。 たとえば、ヨーロッパで Best Western ホテルの部屋を電話で予約した場合、その通話は Amazon Connect によって管理されます。イギリスでは、郵便局が、アイデアから本稼働開始までわずか 3 週間で完了しました。フランスでは、ビジネスプロセスアウトソーシングの世界的リーダーである WebHelp が、わずか 72 時間で数千台のワークステーションとリモートエージェントをアクティブ化しました。 Amazon Connect について最後にブログを投稿して以来、チームは継続的にお客様からのフィードバックを聞いています。本日、Amazon Connect をよりスマートにし、サードパーティのツールとの統合を強化する新しい機能セットを発表できることをうれしく思います。 機械学習 (ML) を使用して、Amazon Connect が、会話をリアルタイムで分析し、コンタクトセンターのエージェントが必要とする関連情報を見つけ、顧客の声で顧客を認証することで、よりスマートにしてます。2 番目の機能セットにより、Amazon Connect はサードパーティのツールやサービスとの統合が容易になり、統合化された顧客プロファイル情報をコンタクトセンターエージェントに提示し、タスクの管理を容易にします。 それでは、詳細を一つずつ見ていきましょう。 Contact Lens Real Time Contact Lens for Amazon Connect は、機械学習 (ML) 機能のセットです。これを使うと、コンタクトセンターのスーパーバイザーは、顧客との会話の感情、傾向、コンプライアンスをよりよく理解することができます。re:Invent 2019 で初めて発表され、2020 年 7 月から 利用可能になりました。エージェントを効果的にトレーニングし、成功したインタラクションを複製し、企業と製品に関する重要なフィードバックを特定することができます。 本日から、顧客が不満を表明するなど、ライブ通話中のカスタマーエクスペリエンスに関するリアルタイムの洞察を得ることができます。カスタマーエクスペリエンスの分析とライブコールのアラートは、Amazon Connect のリアルタイムメトリクスダッシュボードで配信されます。スーパーバイザーは、重要なコールをいつリッスンするかを特定し、チャットを介してエージェントにガイダンスを提供したり、エージェントにコールを転送して支援を求めたりすることが容易になります。 […]

Read More