AWS Big Data Blog
Category: Amazon Managed Service for Apache Flink
AWS named a Leader in IDC MarketScape: Worldwide Analytic Stream Processing Software 2024 Vendor Assessment
We’re thrilled to announce that AWS has been named a Leader in the IDC MarketScape: Worldwide Analytic Stream Processing Software 2024 Vendor Assessment (doc #US51053123, March 2024). We believe this recognition validates the power and performance of Apache Flink for real-time data processing, and how AWS is leading the way to help customers build and […]
In-place version upgrades for applications on Amazon Managed Service for Apache Flink now supported
Managed Service for Apache Flink is a fully managed, serverless experience in running Apache Flink applications, and now supports Apache Flink 1.18.1, the latest released version of Apache Flink at the time of writing. In this post, we explore in-place version upgrades, a new feature offered by Managed Service for Apache Flink. We provide guidance on getting started and offer detailed insights into the feature. Later, we deep dive into how the feature works and some sample use cases.
Krones real-time production line monitoring with Amazon Managed Service for Apache Flink
Krones provides breweries, beverage bottlers, and food producers all over the world with individual machines and complete production lines. This post shows how Krones built a streaming solution to monitor their lines, based on Amazon Kinesis and Amazon Managed Service for Apache Flink. These fully managed services reduce the complexity of building streaming applications with Apache Flink. Managed Service for Apache Flink manages the underlying Apache Flink components that provide durable application state, metrics, logs, and more, and Kinesis enables you to cost-effectively process streaming data at any scale.
Exploring real-time streaming for generative AI Applications
Foundation models (FMs) are large machine learning (ML) models trained on a broad spectrum of unlabeled and generalized datasets. FMs, as the name suggests, provide the foundation to build more specialized downstream applications, and are unique in their adaptability. They can perform a wide range of different tasks, such as natural language processing, classifying images, […]
Amazon Managed Service for Apache Flink now supports Apache Flink version 1.18
Apache Flink is an open source distributed processing engine, offering powerful programming interfaces for both stream and batch processing, with first-class support for stateful processing and event time semantics. Apache Flink supports multiple programming languages, Java, Python, Scala, SQL, and multiple APIs with different level of abstraction, which can be used interchangeably in the same […]
Real-time cost savings for Amazon Managed Service for Apache Flink
When running Apache Flink applications on Amazon Managed Service for Apache Flink, you have the unique benefit of taking advantage of its serverless nature. This means that cost-optimization exercises can happen at any time—they no longer need to happen in the planning phase. With Managed Service for Apache Flink, you can add and remove compute […]
Enable metric-based and scheduled scaling for Amazon Managed Service for Apache Flink
Thousands of developers use Apache Flink to build streaming applications to transform and analyze data in real time. Apache Flink is an open source framework and engine for processing data streams. It’s highly available and scalable, delivering high throughput and low latency for the most demanding stream-processing applications. Monitoring and scaling your applications is critical […]
Implement Apache Flink real-time data enrichment patterns
You can use several approaches to enrich your real-time data in Amazon Managed Service for Apache Flink depending on your use case and Apache Flink abstraction level. Each method has different effects on the throughput, network traffic, and CPU (or memory) utilization. For a general overview of data enrichment patterns, refer to Common streaming data enrichment patterns in Amazon Managed Service for Apache Flink. This post covers how you can implement data enrichment for real-time streaming events with Apache Flink and how you can optimize performance. To compare the performance of the enrichment patterns, we ran performance testing based on synthetic data. The result of this test is useful as a general reference. It’s important to note that the actual performance for your Flink workload will depend on various and different factors, such as API latency, throughput, size of the event, and cache hit ratio.
Modernize a legacy real-time analytics application with Amazon Managed Service for Apache Flink
In this post, we discuss challenges with relational databases when used for real-time analytics and ways to mitigate them by modernizing the architecture with serverless AWS solutions. We introduce you to Amazon Managed Service for Apache Flink Studio and get started querying streaming data interactively using Amazon Kinesis Data Streams. We walk through a call center analytics solution that provides insights into the call center’s performance in near-real time through metrics that determine agent efficiency in handling calls in the queue. Key performance indicators (KPIs) of interest for a call center from a near-real-time platform could be calls waiting in the queue, highlighted in a performance dashboard within a few seconds of data ingestion from call center streams.
Optimize checkpointing in your Amazon Managed Service for Apache Flink applications with buffer debloating and unaligned checkpoints – Part 2
February 2024: This post was reviewed and updated for accuracy. This post is a continuation of a two-part series. In the first part, we delved into Apache Flink‘s internal mechanisms for checkpointing, in-flight data buffering, and handling backpressure. We covered these concepts in order to understand how buffer debloating and unaligned checkpoints allow us to […]