AWS Big Data Blog
Category: Storage
Reduce time to access your transactional data for analytical processing using the power of Amazon SageMaker Lakehouse and zero-ETL
In this post, we demonstrate how you can bring transactional data from AWS OLTP data stores like Amazon Relational Database Service (Amazon RDS) and Amazon Aurora flowing into Redshift using zero-ETL integrations to SageMaker Lakehouse Federated Catalog (Bring your own Amazon Redshift into SageMaker Lakehouse). With this integration, you can now seamlessly onboard the changed data from OLTP systems to a unified lakehouse and expose the same to analytical applications for consumptions using Apache Iceberg APIs from new SageMaker Unified Studio.
Scalable analytics and centralized governance for Apache Iceberg tables using Amazon S3 Tables and Amazon Redshift
In this post, we’ll build on the first post in this series to show you how to set up an Apache Iceberg data lake catalog using Amazon S3 Tables and provide different levels of access control to your data. Through this example, you’ll set up fine-grained access controls for multiple users and see how this works using Amazon Redshift. We’ll also review an example with simultaneously using data that resides both in Amazon Redshift and Amazon S3 Tables, enabling a unified analytics experience.
Simplify enterprise data access using the Amazon Redshift integration with Amazon S3 Access Grants
In this post, we show how to grant Amazon S3 permissions to IAM Identity Center users and groups using S3 Access Grants. We also test the integration using an IAM Identity Center federated user to unload data from Amazon Redshift to Amazon S3 and load data from Amazon S3 to Amazon Redshift.
Accelerate your analytics with Amazon S3 Tables and Amazon SageMaker Lakehouse
Amazon SageMaker Lakehouse is a unified, open, and secure data lakehouse that now seamlessly integrates with Amazon S3 Tables, the first cloud object store with built-in Apache Iceberg support. In this post, we guide you how to use various analytics services using the integration of SageMaker Lakehouse with S3 Tables.
Build unified pipelines spanning multiple AWS accounts and Regions with Amazon MWAA
In this blog post, we demonstrate how to use Amazon MWAA for centralized orchestration, while distributing data processing and machine learning tasks across different AWS accounts and Regions for optimal performance and compliance.
Using Amazon S3 Tables with Amazon Redshift to query Apache Iceberg tables
In this post, we demonstrate how to get started with S3 Tables and Amazon Redshift Serverless for querying data in Iceberg tables. We show how to set up S3 Tables, load data, register them in the unified data lake catalog, set up basic access controls in SageMaker Lakehouse through AWS Lake Formation, and query the data using Amazon Redshift.
How Open Universities Australia modernized their data platform and significantly reduced their ETL costs with AWS Cloud Development Kit and AWS Step Functions
At Open Universities Australia (OUA), we empower students to explore a vast array of degrees from renowned Australian universities, all delivered through online learning. In this post, we show you how we used AWS services to replace our existing third-party ETL tool, improving the team’s productivity and producing a significant reduction in our ETL operational costs.
Hybrid big data analytics with Amazon EMR on AWS Outposts
In this post, we dive into the transformative features of EMR on Outposts, showcasing its flexibility as a native hybrid data analytics service that allows seamless data access and processing both on premises and in the cloud.
How MuleSoft achieved cloud excellence through an event-driven Amazon Redshift lakehouse architecture
In our previous thought leadership blog post Why a Cloud Operating Model we defined a COE Framework and showed why MuleSoft implemented it and the benefits they received from it. In this post, we’ll dive into the technical implementation describing how MuleSoft used Amazon EventBridge, Amazon Redshift, Amazon Redshift Spectrum, Amazon S3, & AWS Glue to implement it.
Accelerate queries on Apache Iceberg tables through AWS Glue auto compaction
In this post, we explore new features of the AWS Glue Data Catalog, which now supports improved automatic compaction of Iceberg tables for streaming data, making it straightforward for you to keep your transactional data lakes consistently performant. Enabling automatic compaction on Iceberg tables reduces metadata overhead on your Iceberg tables and improves query performance