Artificial Intelligence
Category: Amazon Machine Learning
Responsible AI in action: How Data Reply red teaming supports generative AI safety on AWS
In this post, we explore how AWS services can be seamlessly integrated with open source tools to help establish a robust red teaming mechanism within your organization. Specifically, we discuss Data Reply’s red teaming solution, a comprehensive blueprint to enhance AI safety and responsible AI practices.
InterVision accelerates AI development using AWS LLM League and Amazon SageMaker AI
This post demonstrates how AWS LLM League’s gamified enablement accelerates partners’ practical AI development capabilities, while showcasing how fine-tuning smaller language models can deliver cost-effective, specialized solutions for specific industry needs.
Improve Amazon Nova migration performance with data-aware prompt optimization
In this post, we present an LLM migration paradigm and architecture, including a continuous process of model evaluation, prompt generation using Amazon Bedrock, and data-aware optimization. The solution evaluates the model performance before migration and iteratively optimizes the Amazon Nova model prompts using user-provided dataset and objective metrics.
Customize Amazon Nova models to improve tool usage
In this post, we demonstrate model customization (fine-tuning) for tool use with Amazon Nova. We first introduce a tool usage use case, and gave details about the dataset. We walk through the details of Amazon Nova specific data formatting and showed how to do tool calling through the Converse and Invoke APIs in Amazon Bedrock. After getting the baseline results from Amazon Nova models, we explain in detail the fine-tuning process, hosting fine-tuned models with provisioned throughput, and using the fine-tuned Amazon Nova models for inference.
Evaluate Amazon Bedrock Agents with Ragas and LLM-as-a-judge
In this post, we introduced the Open Source Bedrock Agent Evaluation framework, a Langfuse-integrated solution that streamlines the agent development process. We demonstrated how this evaluation framework can be integrated with pharmaceutical research agents. We used it to evaluate agent performance against biomarker questions and sent traces to Langfuse to view evaluation metrics across question types.
Enterprise-grade natural language to SQL generation using LLMs: Balancing accuracy, latency, and scale
In this post, the AWS and Cisco teams unveil a new methodical approach that addresses the challenges of enterprise-grade SQL generation. The teams were able to reduce the complexity of the NL2SQL process while delivering higher accuracy and better overall performance.
AWS Field Experience reduced cost and delivered low latency and high performance with Amazon Nova Lite foundation model
The AFX team’s product migration to the Nova Lite model has delivered tangible enterprise value by enhancing sales workflows. By migrating to the Amazon Nova Lite model, the team has not only achieved significant cost savings and reduced latency, but has also empowered sellers with a leading intelligent and reliable solution.
Combine keyword and semantic search for text and images using Amazon Bedrock and Amazon OpenSearch Service
In this post, we walk you through how to build a hybrid search solution using OpenSearch Service powered by multimodal embeddings from the Amazon Titan Multimodal Embeddings G1 model through Amazon Bedrock. This solution demonstrates how you can enable users to submit both text and images as queries to retrieve relevant results from a sample retail image dataset.
Protect sensitive data in RAG applications with Amazon Bedrock
In this post, we explore two approaches for securing sensitive data in RAG applications using Amazon Bedrock. The first approach focused on identifying and redacting sensitive data before ingestion into an Amazon Bedrock knowledge base, and the second demonstrated a fine-grained RBAC pattern for managing access to sensitive information during retrieval. These solutions represent just two possible approaches among many for securing sensitive data in generative AI applications.
Use Amazon Bedrock Intelligent Prompt Routing for cost and latency benefits
Today, we’re happy to announce the general availability of Amazon Bedrock Intelligent Prompt Routing. In this blog post, we detail various highlights from our internal testing, how you can get started, and point out some caveats and best practices. We encourage you to incorporate Amazon Bedrock Intelligent Prompt Routing into your new and existing generative AI applications.