AWS Machine Learning Blog

Category: Artificial Intelligence

Deploy large language models on AWS Inferentia2 using large model inference containers

You don’t have to be an expert in machine learning (ML) to appreciate the value of large language models (LLMs). Better search results, image recognition for the visually impaired, creating novel designs from text, and intelligent chatbots are just some examples of how these models are facilitating various applications and tasks. ML practitioners keep improving […]

Deploy pre-trained models on AWS Wavelength with 5G edge using Amazon SageMaker JumpStart

With the advent of high-speed 5G mobile networks, enterprises are more easily positioned than ever with the opportunity to harness the convergence of telecommunications networks and the cloud. As one of the most prominent use cases to date, machine learning (ML) at the edge has allowed enterprises to deploy ML models closer to their end-customers […]

Import data from over 40 data sources for no-code machine learning with Amazon SageMaker Canvas

Data is at the heart of machine learning (ML). Including relevant data to comprehensively represent your business problem ensures that you effectively capture trends and relationships so that you can derive the insights needed to drive business decisions. With Amazon SageMaker Canvas, you can now import data from over 40 data sources to be used […]

Predicting new and existing product sales in semiconductors using Amazon Forecast

This is a joint post by NXP SEMICONDUCTORS N.V. & AWS Machine Learning Solutions Lab (MLSL) Machine learning (ML) is being used across a wide range of industries to extract actionable insights from data to streamline processes and improve revenue generation. In this post, we demonstrate how NXP, an industry leader in the semiconductor sector, […]

Solution Diagram

Implement unified text and image search with a CLIP model using Amazon SageMaker and Amazon OpenSearch Service

The rise of text and semantic search engines has made ecommerce and retail businesses search easier for its consumers. Search engines powered by unified text and image can provide extra flexibility in search solutions. You can use both text and images as queries. For example, you have a folder of hundreds of family pictures in […]

Promote search content using Featured Results for Amazon Kendra

Amazon Kendra is an intelligent search service powered by machine learning (ML). We are excited to announce the launch of Amazon Kendra Featured Results. This new feature makes specific documents or content appear at the top of the search results page whenever a user issues a certain query. You can use Featured Results to improve […]

Automatic image cropping with Amazon Rekognition

Digital publishers are continuously looking for ways to streamline and automate their media workflows in order to generate and publish new content as rapidly as they can. Many publishers have a large library of stock images that they use for their articles. These images can be reused many times for different stories, especially when the […]

Automate and implement version control for Amazon Kendra FAQs

Amazon Kendra is an intelligent search service powered by machine learning (ML). Amazon Kendra reimagines enterprise search for your websites and applications so your employees and customers can easily find the content they’re looking for, even when it’s scattered across multiple locations and content repositories within your organization. Amazon Kendra FAQs allow users to upload […]


Boost your forecast accuracy with time series clustering

Time series are sequences of data points that occur in successive order over some period of time. We often analyze these data points to make better business decisions or gain competitive advantages. An example is Shimamura Music, who used Amazon Forecast to improve shortage rates and increase business efficiency. Another great example is Arneg, who […]

Generate a counterfactual analysis of corn response to nitrogen with Amazon SageMaker JumpStart solutions

In his book The Book of Why, Judea Pearl advocates for teaching cause and effect principles to machines in order to enhance their intelligence. The accomplishments of deep learning are essentially just a type of curve fitting, whereas causality could be used to uncover interactions between the systems of the world under various constraints without […]