AWS Machine Learning Blog

Category: Artificial Intelligence

Computer vision using synthetic datasets with Amazon Rekognition Custom Labels and Dassault Systèmes 3DEXCITE

This is a post co-written with Bernard Paques, CTO of Storm Reply, and Karl Herkt, Senior Strategist at Dassault Systèmes 3DExcite. While computer vision can be crucial to industrial maintenance, manufacturing, logistics, and consumer applications, its adoption is limited by the manual creation of training datasets. The creation of labeled pictures in an industrial context […]

Secure Amazon S3 access for isolated Amazon SageMaker notebook instances

In this post, we will demonstrate how to securely launch notebook instances in a private subnet of an Amazon Virtual Private Cloud (Amazon VPC), with internet access disabled, and to securely connect to Amazon Simple Storage Service (Amazon S3) using VPC endpoints. This post is for network and security architects that support decentralized data science […]

Build, Share, Deploy: how business analysts and data scientists achieve faster time-to-market using no-code ML and Amazon SageMaker Canvas

Machine learning (ML) helps organizations increase revenue, drive business growth, and reduce cost by optimizing core business functions across multiple verticals, such as demand forecasting, credit scoring, pricing, predicting customer churn, identifying next best offers, predicting late shipments, and improving manufacturing quality. Traditional ML development cycles take months and require scarce data science and ML […]

Enhance your SaaS offering with a data science workbench powered by Amazon SageMaker Studio

Many software as a service (SaaS) providers across various industries are adding machine learning (ML) and artificial intelligence (AI) capabilities to their SaaS offerings to address use cases like personalized product recommendation, fraud detection, and accurate demand protection. Some SaaS providers want to build such ML and AI capabilities themselves and deploy them in a […]

create autopilot experiment

Make batch predictions with Amazon SageMaker Autopilot

Amazon SageMaker Autopilot is an automated machine learning (AutoML) solution that performs all the tasks you need to complete an end-to-end machine learning (ML) workflow. It explores and prepares your data, applies different algorithms to generate a model, and transparently provides model insights and explainability reports to help you interpret the results. Autopilot can also […]

Automate digitization of transactional documents with human oversight using Amazon Textract and Amazon A2I

In this post, we present a solution for digitizing transactional documents using Amazon Textract and incorporate a human review using Amazon Augmented AI (A2I). You can find the solution source at our GitHub repository. Organizations must frequently process scanned transactional documents with structured text so they can perform operations such as fraud detection or financial […]

Load and transform data from Delta Lake using Amazon SageMaker Studio and Apache Spark

Data lakes have become the norm in the industry for storing critical business data. The primary rationale for a data lake is to land all types of data, from raw data to preprocessed and postprocessed data, and may include both structured and unstructured data formats. Having a centralized data store for all types of data […]

Extract granular sentiment in text with Amazon Comprehend Targeted Sentiment

Amazon Comprehend is a natural language processing (NLP) service that uses machine learning (ML) to discover insights from text. As a fully managed service, Amazon Comprehend requires no ML expertise and can scale to large volumes of data. Amazon Comprehend provides several different APIs to easily integrate NLP into your applications. You can simply call […]

Amazon SageMaker Autopilot now supports time series data

Amazon SageMaker Autopilot automatically builds, trains, and tunes the best machine learning (ML) models based on your data, while allowing you to maintain full control and visibility. We have recently announced support for time series data in Autopilot. You can use Autopilot to tackle regression and classification tasks on time series data, or sequence data […]

Enable Amazon SageMaker JumpStart for custom IAM execution roles

With an Amazon SageMaker Domain, you can onboard users with an AWS Identity and Access Management (IAM) execution role different than the Domain execution role. In such case, the onboarded Domain user can’t create projects using templates and Amazon SageMaker JumpStart solutions. This post outlines an automated approach to enable JumpStart for Domain users with […]